

MICROCOPY RESOLUTION TEST CHART MATINAL PRIBEARS A STANLARS TO A STANLARS

AFOSR-TR- 80-0448

R80-944590-1

3

59

AD A 0 8

MICROPROCESSOR REQUIREMENTS FOR IMPLEMENTING **MODERN CONTROL LOGIC**

ROBERT W. GUILE JAMES R. KRODEL **FLORENCE A. FARRAR**

UNITED TECHNOLOGIES RESEARCH CENTER EAST HARTFORD, CONNECTICUT 06108

CONTRACT F49620-79-C-0078

April 1980

FINAL REPORT FOR PERIOD 1 MARCH 1979 -- 29 FEBRUARY 1980

Approved for public release; distribution unlimited

PREPARED FOR AIR FORCE OFFICE OF SCIENTIFIC RESEARCH DEPARTMENT OF THE AIR FORCE **BOLLING AIR FORCE BASE** WASHINGTON, D.C. 20332

80

6 11 002

Approved for public release; distribution unlimited.

AIR PORCE OFFICE OF SCIENTIFIC RESEARCH (APSC)
MOTICE OF TRANSMITTAL TO DDC
This technical report has been reviewed and is approved for public release IAW AFR 190-18 (7b).
Distribution is unlimited.
A. D. BLOSE
Rechnical Information Officer

	- (19 m) - ON O POCOMETITATION ADE	BEFORE COMPLETING FORM		
		ECIPIENT'S CATALOG NUMBER		
18	8 AFOSR TR-8 9 - 9 4 4 3 AD-A085994 9			
	A THE COMMON	THE OF MEPONT & PERIOD CAVERED		
- []	Z z z z z z z z z z z z z z z z z z z z	inal Technical Report.		
6	Modern Control Logic	March 1979-29 February 1980		
	1 (Fee and 1774, b) (And 1774, and the angular state of the angular stat	PERFORMING ORG. REPORT NUMBER		
	7. WYMOR(e) 8. (CONTRACT OR GRANT NUMBER(s)		
(1	Robert W./Guile			
<i>\(\)</i>	James R. Krodel	F49628-79-C-8878		
	Florence A. Farrar	The state of the s		
		PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS		
-	United Technologies Research Center	61102F		
-	Silver Lane	2304 A1 (17) A1		
	East Hartford, Connecticut 06108			
	11. CONTROLLING OFFICE NAME AND ADDRESS Air Force Office of Scientific Research/ M			
•	Bolling Air Force Base	NUMBER OF PAGES		
	Washington, D. C. 20332	75		
		SECURITY CLASS. (of this report)		
		Unclassified		
	Nan L			
	(12)8 (154)	DECLASSIFICATION DOWNGRADING SCHEDULE		
	16. DISTRIBUTION STATEMENT (of this Report)			
. 1 (2) 2.25	Approved for public release; distribution unlimited.	mb - H-14-3 Care		
	Government is authorized to reproduce and distribute and	The United States		
<u> </u>	Government is authorized to reproduce and distribute re purposes notwithstanding any copyright notation hereon.			
	purposes notwithstanding any copyright notation hereon.	!		
		Ī		
	17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Rep	Port)		
		j		
		- Andrews		
	(14/UTRC/R80-944590	-1 /		
-	18. SUPPLEMENTALY NOTES			
	Preliminary results presented at Institute of Electri	cal and Flactments		
	Engineers Conference on Decision and Control on 7 Decem	hor 1979 de		
	Fort Lauderdale, Florida	ber 1979 In		
1.5				
reneral Salahan	19. KEY WORDS (Continue on reverse side if necessary and identify by block number)			
. 4		essor Control		
,	Accuracy Requirements			
***	Computational Requirements			
	Memory Requirements			
1	20. ABSTRACT (Continue on reverse side if necessary and identify by block number)			
: [A demonstration of the use of microprocessors for imp	plementing linear		
	quadratic Gaussian (LQG) control was conducted. The den	monstration consisted of		
	simulating linear system dynamics on an analog computer	and implementing ING		
	control and estimation dynamics on a microprocessor. Two cases were studied; a			
	single input second order system and a four input fifth	order system. The		
:2	second order system was controlled using an Intel 8080	8-hit micronrocessor and		
	the fifth order system was controlled using a 16-bit Di	oital Fauinment		
		lassified		
	SECURITY CLASSIFIC	CATION OF THIS PAGE (When Date Entered)		
	409:	non lui		
93Mt	407	to de the		

Inclassified
SECURITY CLASSIFICATION OF THIS PAGE(When Date English)

Corporation LSI 11/2 microprocessor. Key requirements addressed in this study included microprocessor requirements for; (1) word size; (2) computational capability including arithmetic and input/output operations; and (3) memory requirements. The requirements were compared against predicted requirements made using previously developed analytic techniques.

The implementation involved developing general purpose algorithms required for implementing LQG control and estimation. These algorithms consisted of matrix/vector multiplication, vector addition and input/output service routines. The same algorithms were employed in both the second order and the fifth order demonstration.

Unclassified

FINAL TECHNICAL REPORT REPORT R80-944590-1

MICROPROCESSOR REQUIREMENTS FOR IMPLEMENTING MODERN CONTROL LOGIC

ROBERT W. GUILE

JAMES R. KRODEL

FLORENCE A. FARRAR

Research sponsored by the Air Force Office of Scientific Research (AFOSR) United States Air Force, under contract No. F49620-79-C-0078. The United States Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright notation hereon.

Approved for public release, distribution unlimited

UNITED TECHNOLOGIES RESEARCH CENTER

EAST HARTFORD CONNECTICUT 06108

FOREWORD

This final technical report documents research performed from 1 March 1979 to 29 February 1980 under Air Force Office of Scientific Research (AFOSR) Contract F496209-79-C-0078. This research program was conducted at United Technologies Research Center (UTRC), East Hartford, Connecticut 06108. Major Charles L. Nefzger served as the AFOSR Scientific Officer.

This report is issued as UTRC Report R80-944590-1.

Accessio	
MTIS OF	A&I
DOC TAB	الخا
Unamnour	iced
Justifi	201101
-	
Ву	
Distrit	ut.icn/
4	bility Codes
VAST	Avail and/or
1	special
Dist	Spe-
1 A	
I	
1 4 5	I

R80-944590-1

Microprocessor Requirements for Implementing Modern Control Logic

TABLE OF CONTENTS

TABLE OF CONTENTS	i i 1 2 4
SUMMARY	1 2 4
RESULTS AND CONCLUSIONS	2
	4
INTRODUCTION	•
	6
CONTROL OF NONLINEAR STOCHASTIC SYSTEMS	
System Description	6
	7
Digital Implementation	4
LINEAR SYSTEM RESULTS	8
Microprocessor Requirements-Linear Systems	8
APPLICATION AND VERIFICATION OF MICROPROCESSOR	
REQUIREMENT PROCEDURES	1
Second Order System	2
Fifth Order System	_
REFERENCES	7
LIST OF SYMBOLS	9
TABLES	2
FIGURES	
APPENDIX A - MICROPROCESSOR SURVEY	1
APPENDIX B - INTEL 8080 SOFTWARE FOR LQG CONTROLLER	1
APPENDIX C - LSI-11 SOFTWARE FOR LOG CONTROLLER	_

R80-944590-1

Microprocessor Requirements for Implementing Modern Control Logic

SUMMARY

A demonstration of the use of microprocessors for implementing linear quadratic Gaussian (LQG) control was conducted. The demonstration consisted of simulating linear system dynamics on an analog computer and implementing LQG control and estimation dynamics on a microprocessor. Two cases were studied, a single input second order system and a four input fifth order system. The second order system was controlled using an Intel 8080 8-bit microprocessor and the fifth order system was controlled using a 16-bit Digital Equipment Corporation LSI 11/2 microprocessor. Key requirements addressed in this study included microprocessor requirements for (1) word size (2) computational capability including arithmetic and input/output operations and (3) memory requirements. The requirements were compared against predicted requirements made using previously developed analytic techniques

The implementation involved developing general purpose algorithms required for implementing LQG control and estimation. These algorithms consisted of matrix/vector multiplication, vector addition and input/output service routines. The same algorithms were employed in both the second order and the fifth order demonstration.

Analytic procedures were developed for establishing microprocessor requirements for control of nonlinear systems. Techniques were described for designing nonlinear controls based on the application of LQG theory in which the nonlinear system dynamics were approximated by a series of linearized system descriptions at a number of operating points. Linear control and estimation methodology was applied to the linearized descriptions resulting in a series of piecewise optimal state variable feedback controls. Techniques are described for synthesizing the nonlinear control and estimation equations by scheduling the piecewise optimal gains between operating points. Microprocessor requirements were then predicted for the piecewise optimal configuration in terms of computational operation and total memory required.

This research was performed for the U.S. Air Force Office of Scientific Research under Contract F49620-79-C-0078.

RESULTS AND CONCLUSIONS

- 1) The implementation of modern control and estimation techniques based on linear quadratic Gaussian (LQG) methodology was successfully demonstrated using commercially available microprocessors. The demonstration was conducted for both a single input second order linear system and a four input fifth order linear system. The linear system dynamics were simulated on an analog computer and the LQG control was implemented using microprocessors. An eight bit Intel 8080 microprocessor was used to control the second order system and a sixteen bit Digital Equipment Corporation LSI 11/2 microprocessor was used to control the fifth order system.
- 2) Analytic techniques developed in the Phase I portion of the program were applied to predict the microprocessor requirements prior to implementation. These techniques resulted in procedures for addressing key issues associated with microprocessor implementation including word size, computational requirements, and memory. Application of the prediction techniques resulted in estimates for both the second order and the fifth order system in terms of these key issues. The actual requirements resulting from this study agree with predicted values. However, the particular characteristics of the interface between the microprocessor and the analog system i.e., the D/A converters and A/D converters may lead to additional software being required to ensure proper scaling. Also, additional software requirements arise because of the detailed characteristics of the hardware multiplication function. These two features are device dependent and the requirements in terms of software to work with them will depend on the devices selected. The analytic prediction techniques are very accurate in specifying the number and type of operation i.e., addition, multiplication, with some qualification. In the actual implementation it was found that additional software was required beyond that predicted. This additional software was required to (1) properly account for necessary scaling between the microprocessor and the analog simulation and (2) allow for signed multiplication and division when using a hardwired multiplication option on the LSI 11/2.
- 3) The Phase I study indicated that the number of operations required per sample time as well as the memory requirements were dependent on the structure of the system. Transformation could be used to express the system state vector in a new coordinate system which in turn could be used as a basis for designing the LQG control. Typical transformations include both the Jordan canonical and the Companion form. While transformation to one of these forms offers the potential for increased speed and reduced memory requirements, it was found that it is not always practical to use this approach. A transformation was used for the fifth order system in an attempt to reduce the number of analog computer components needed. However, when the control and estimation matrices for the

transformed systems were calculated it was found that they contained numbers ranging over eleven orders of magnitude. The large range of values could not be accommodated by the 16 bit word size of the LSI 11/2.

Although it is possible to reduce the number of operations and memory required by state vector transformation there is no guarantee that the result will be amenable to implementation on a (fixed point) microprocessor. The use of such transformations should be with caution. Evaluating a particular microprocessor for implementing LQG control should be done first on the basis of the physical system description. Resort to alternate forms may reduce the apparent number of computations and memory required but the scaling issue discussed above must be considered.

4) The second order system validation using on Intel 8080 microprocessor required 4.7 ms computation time compared with the predicted value of 4.25 ms. The actual memory used was 483 words of which 468 were PROM and 15 were RAM. The predicted values were 490 words including 15 words of RAM and 475 words of PROM.

The fifth order system validation using an LSI 11/2 microprocessor required 14.45 ms computation time compared with the predicted value of 9.68 ms. The discrepency is due to the additional software required to execute signed multiplication which was not accounted for in the prediction. The actual memory used was 422 words of which 109 words were RAM and 313 words were PROM. The predicted memory requirements were 304 words including 121 words of RAM and 183 words of PROM. The differences between the actual and estimated memory requirements is primarily due to the additional software for signed multiplication.

5) Microprocessor requirements for implementing control and estimation for non-linear systems were defined. The nonlinear control and estimation structure was developed based on a piecewise linear approach which approximates the nonlinear system by a series of linearized systems evaluated at various operating points of the system.

Optimal linear control and estimation designs are developed for each operating point based on LQG theory. These designs are coupled together by scheduling the control and estimation matrices between operating points using linear interpolation as a function of the state of the nonlinear system.

Microprocessor requirements for implementing the nonlinear configuration indicate the largest impact is in the additional memory required compared to the linear system. The additional memory results from the requirement that control and estimation matrices must be stored for each operating point considered. However, the increased memory is a linear function of the number of operating points. This coupled with the facts that 1) the memory requirements for LQG are small and 2) large capacity memories have been available for some time indicates that the memory requirements for nonlinear implementation are not excessive.

INTRODUCTION

Over the past several years use of modern control methodology -- in particular, linear quadratic Gaussian (LQG) theory -- has gained increased recognition as an effective design tool for control of nonlinear multivariable stochastic systems (Refs. 1-8). The referenced studies have been conducted under a combination of AFOSR, Office of Naval Research (ONR), Air Force Aero Propulsion Laboratory (AFAPL), NASA-Lewis and Pratt & Whitney Aircraft (P&WA) support. In these as well as many other aerospace applications the primary impetus for application of modern LQG control concepts is improved system performance combined with the advent of digital electronic control implementation. Digital electronics provide the means by which complex controllers associated with LQG theory can be implemented. The current trend both within as well as outside the aerospace controls community toward increased use of digital electronics -- in particular, microprocessors -- will lead to increased use of modern control logic including system identification, modeling, estimation, and multivariable control methodologies (Ref. 9). In addition, use of microcomputer controllers will lead, in many instances, to reduced control cost (Refs. 10 and 11), lighter and smaller controls (Ref. 12), lower power requirements and integrated circuit reliability (Ref. 13). Recent studies (Ref. 14) have demonstrated that existing microprocessor can be used to implement algorithms for parameter identification of relatively simple, low-order dynamic systems.

However, prior to widespread use of microprocessors for modern control logic implementation key issues associated with microprocessor implementation of LQG control and estimation concepts must be addressed and resolved. These issues include (1) accuracy, (2) computational capability, (3) memory, and (4) interface requirements (Ref. 15). These requirements depend upon system dynamics as well as upon the particular control algorithm employed. Defining these requirements will establish criteria for selecting the appropriate computer system for control implementation.

To address these important issues a two phase two year program directed toward establishing microprocessor requirements for implementating modern control logic was initiated at UTRC under AFOSR support in 1978. The Phase I study (Ref. 16) was concerned with establishing analytic techniques for evaluating microprocessor requirements for implementing modern control and estimation for linear systems. These techniques were applied to two selected examples, a single input second order system and a four input fifth order system. The implementation requirements for each system were identified and a candidate microprocessor was selected as a suitable device for implementing each of the system control and estimation algorithms.

This report presents results for the Phase II effort of the program which was directed toward verification of the analytic procedures of Phase I. The verification was conducted for both the second order and the fifth order cases analyzed in Phase I. The procedures involved simulating the system dynamics on an EAI/1000 analog computer. The control and estimation dynamics were implemented on an Intel 8080 microprocessor for the second order case and a Digital Equipment Corporation LSI-11/2 microprocessor for the fifth order case. Comparisons are presented between the predicted microprocessor requirements and those realized using the hybrid simulation approach mentioned above.

The Phase I techniques have also been extended to the general class of nonlinear systems. An analysis is presented which treats the nonlinear problem as a series of linear problems by linearizing the dynamics at a set of operating points. The LQG design methodology is applied at each of the operating points to develop a series of piecewise linear optimal control and estimation configurations. The microprocessor requirements for implementing this approximation to the optimal nonlinear solution are presented.

CONTROL OF NONLINEAR STOCHASTIC SYSTEMS

In this section the general nonlinear stochastic regulation problem is presented. The nonlinear stochastic system model is defined first. This model is general in nature and applicable to a broad class of estimation and control problems.

A technique for synthesizing feedback control of the general system is then presented. The approach is to represent the nonlinear system as a set of linear systems defined throughout the operating regime of the nonlinear plant. Linear quadratic Gaussian (LQG) control design is then reviewed as applied to the linearized plant description. A technique for extending the linear design to the nonlinear plant is then presented which uses gain scheduling within the controller. In the final part of this section the digital implementation of the nonlinear and linear controllers are discussed.

System Description

The system model is shown in Fig. 1 with provision for estimation and regulation algorithms included. The system consists of a nonlinear plant, control actuators, and sensors. The control actuators are physical devices which translate commanded inputs into actual plant inputs. This translation is not exact and, therefore, process noise is included to account for actuator uncertainties. This process noise also models external plant disturbances and system-to-system parameter variations. Plant state variables are generated through plant dynamics and the actual inputs. These state variables in conjunction with the actual inputs govern the plant output response. Plant state variables are available only through sensors which contain inherent lags and nonlinearities. These sensors indicate which state variables or combinations thereof can be measured. Sensor noise is included to account for measurement inaccuracies. Modeling actuator and measurement uncertainties by stochastic processes translates these physical uncertainties into mathematically tractable representations. The statistical properties of these random processes define the process and sensor inaccuracies.

System dynamics are given by the differential and algebraic equations

$$\dot{x}(t) = f(x(t), u(t), \xi(t))$$

 $y(t) = g(x(t), u(t))$ (1)
 $z(t) = h(x(t)) + h(t)$

where x represents the n-dimensional system state vector, u represents the m-dimensional actuator input vector, y represents the p-dimensional plant output vector, and z represents the ℓ -dimensional measurement vector. The random process vectors ξ and η represent white zero-mean Gaussian m-dimensional actuator and ℓ -dimensional sensor noise, respectively. The dot notation denotes differentiation with respect to time. The vector functions f, g, and h are assumed continuous and twice differentiable in all their arguments. Note that f includes all dynamics associated with the plant, actuators and sensors. The initial state vector is assumed to be a Gaussian random variable with known mean. The random vectors $\mathbf{x}(0)$, $\xi(t)$, and $\eta(t)$ are assumed independent with known covariances. The statistics of the system uncertainties are defined by

$$E\{x(0)\} \stackrel{\triangle}{=} \overline{x}(0)$$

$$E\{(x(0)-\overline{x}(0))(x(0)-\overline{x}(0))^{\dagger}\} \stackrel{\triangle}{=} S(0)$$

$$E\{\xi(t)\} = 0$$

$$E\{\xi(t)\xi^{\dagger}(\tau)\} = Q(t)\delta(t-\tau)$$

$$E\{\eta(t)\} = 0$$

$$E\{\eta(t)\eta^{\dagger}(\tau)\} = R(t)\delta(t-\tau)$$

$$E\{(x(0)-\overline{x}(0))\xi^{\dagger}(t)\} = 0$$

$$E\{(x(0)-\overline{x}(0))\eta^{\dagger}(t)\} = 0$$

$$E\{\xi(t)\eta^{\dagger}(\tau)\} = 0$$

where $\delta(t-\tau)$ is the Dirac delta function and the prime denotes a transpose.

Control Design Approach

The controller must generate inputs to the actuators to achieve desired system performance as determined by actual plant state and output response. The time response of actual plant variables, rather than measured variables, is therefore the key quantity that enters into an assessment of system performance. The controller must determine time evolution of the actuator inputs—the only system variables which can be directly adjusted—to satisfactorily control time evolution of actual plant state and output variables.

The nonlinear stochastic feedback regulator design depends on (1) the dynamics of the system, (2) the levels of uncertainty in the system, and (3) performance criteria that specify satisfactory time evolution of the system inputs and outputs. The design issue is complicated by the interplay between system dynamics, the stochastic nature of the problem, and the effects of deterministic commanded inputs. However, a design philosophy that separates the deterministic and stochastic aspects of the problem can be adopted.

The design approach involves first linearizing the system dynamics of Eq. 1, applying linear quadratic regulator (LQR) control techniques to the linear deterministic description, developing estimator equations for the stochastic portion and finally developing the nonlinear control by combining the control and estimation equations.

The separation theorem (Ref. 17) allows optimal solution of the control and filter problems separately for linear systems. In general, if the over-all nonlinear quadratic stochastic control problem could be solved, the resulting optimal design would not obey the separation property. Since at the present time the combined optimal nonlinear estimation and control problem cannot be solved, the separation concept and a linear quadratic Gaussian approach is employed to arrive at a set of related problems that can be solved.

Linearized System Description

For steady-state regulation, the controller must maintain the actual plant variables as close as possible to the steady-state operating point in the presence of plant disturbances. In these small-signal situations, the nonlinear system of Eq. (1) can be described by a linearized perturbational model which approximates the dynamic behavior of the nonlinear system in a small region about the steady-state operating point. Linear dynamics are determined by expanding the nonlinear system functions f, g, and h (Eq. (1)) in a Taylor series expansion about the steady-state operating point (x_{ss}). Retaining only first-order terms in the Taylor series expansion results in the perturbational equations of the system dynamics.

$$\delta \dot{\mathbf{x}}(t) = \mathbf{A}\delta \mathbf{x}(t) + \mathbf{B} \ \delta \mathbf{u}(t) + \xi(t)$$

$$\delta \mathbf{y}(t) = \mathbf{C}\delta \mathbf{x}(t) + \mathbf{D} \ \delta \mathbf{u}(t)$$

$$\delta \mathbf{z}(t) = \mathbf{E}\delta \mathbf{x}(t) + \eta(t)$$
(3)

where δx , δu , δy , and δz represent state, input, output and measurement perturbations, respectively, and statistical properties are as previously defined for Eq. (1). The A (n x n), B (n x m), C (p x n), D (p x m) and E (ℓ x n) matrices are given by

$$A = \frac{\partial f}{\partial x}, B = \frac{\partial f}{\partial u}, C = \frac{\partial g}{\partial x}, D = \frac{\partial g}{\partial u}, E = \frac{\partial h}{\partial x}$$
 (4)

evaluated at the point $x = x_{ss}$.

Deterministic Control

A systematic technique for deterministic multivariable nonlinear system control design based on linear quadratic regulator theory -- specifically, the piecewise-linear/piecewise-optimal (PLPO) control technique -- was developed (Ref. 2). The deterministic control design procedure assumes no uncertainities, i.e., it is assumed that (1) no actuator errors exist, (2) no plant disturbances occur, (3) all state and output variables are measured perfectly, and (4) actuator and plant dynamics and parameters are known exactly. Under these assumptions, plant state and output variables can be determined for any given commanded inputs.

The analytical PLPO method is based on linearizing the system about a set of closely spaced steady-state operating points and applying linear optimization methods at each point. A single nonlinear control problem is thereby reduced to a series of linear control problems. This permits the use of established analytical and numerical methods associated with linear quadratic control theory. At each operating point, an optimal linear feedback controller is generated by minimizing a quadratic performance criterion. Weighting factors within each performance criterion enable the control designer to satisfy performance specifications by trading-off system response against control actuation rates. Nonlinear feedback control is then constructed by combining the series of linear controllers into a single nonlinear controller whose feedback gains vary with system state.

LQR theory applied at any operating point given an optimal incremental control for the linearized system dynamics described by Eq. 3. The general form of this control is

$$\delta \mathbf{u}^* = \mathbf{G}(\mathbf{x}_{ss}) \ \delta \mathbf{x} \tag{5}$$

where $G(m \times m)$ represents the optimum feedback gain matrix for operation at the steady-state point x_{ss} . The PLPO technique applied to Eq. 5 gives the algorithm for implementation the nonlinear control:

$$u^* = \int_{\mathbf{x}(0)}^{\mathbf{x}(t)} G(\mathbf{x}(\tau)) d\mathbf{x}(\tau) + \mathbf{u}(0)$$
 (6)

Since the controller gain matrix G is defined at a series of design points along the system steady-state operating line, on-line interpolation is used to determine values for G between the operating points.

State Estimation Design

The stochastic aspects of the problem are reintroduced for the estimation portion of control system design. In addition to plant, actuator and model uncertainties, the fact that all state variables cannot be measured and that any measurement is subject to sensor errors must be taken into account. The objective of this step is to design an estimator or filter that generates, on the basis of past and present sensor measurements, estimated plant state and output variables as close as possible to actual plant state and output variables at any instant of time.

Linear filtering theory may be applied to nonlinear systems by continually updating a linearization around the current state estimates. The resulting estimation algorithm is the extended Kalman filter. The system dynamics for the extended Kalman filter are represented by the nonlinear deterministic system equations. The estimated state variables $\hat{\mathbf{x}}(t)$ and output variables $\hat{\mathbf{y}}(t)$ are generated by the nonlinear differential and algebraic equations

$$\hat{x}(t) = f(\hat{x}(t), u(t), 0) + K(t) (z(t) - h(\hat{x}(t)))$$

$$\hat{y}(t) = g(\hat{x}(t), u(t), 0)$$
(7)

where the n x 2 Kalman gain matrix K(t) depends on (1) the partial derivatives $\partial f/\partial x$ and $\partial h/\partial x$ evaluated with respect to the estimated states $\hat{x}(t)$, and (2) the sensor and driving noise statistics. Extended Kalman filtering theory calls for the matrix K(t) to be calculated in real time since it is coupled to the current state estimates through the relinearization procedure. This on-line gain calculation often results in filter divergence (kef. 18) due primarily to (1) on-line linear system approximations required for on-line gain calculations, (2) model-mismatch between the filter model and the actual system, and (3) mismatch between actual system noise statistics and those statistics assumed in calculating the gains. In addition, $\underline{n(n+1)}$ differential

equations must be solved to calculate the gain matrix H(t). The derivation is the extended Kalman filter is presented in Ref. 17.

In Ref. 5 techniques were developed for large-signal filtering logic with off-line gain calculation to (1) avoid the divergence problems associated with on-line gain calculation, and (2) reduce the computational complexity of the filtering logic. The filtering logic was defined based on representing the system by reduced-order models to further reduce the computational complexity of the estimation of algorithms. In addition, model-mismatch compensation techniques were established to eliminate bias errors due to modeling inaccuracies, system-to-system variations, and system degradation. Results obtained in the Ref. 3 UTRC study directed toward stochastic small-signal regulation of nonlinear multivariable dynamic systems indicate that Kalman filtering methodology with model-mismatch compensation is an effective means for achieving accurate estimation. In addition, the Ref. 3 study showed that improved estimation leads to improved stochastic regulation.

Off-line Kalman gain calculation is based on the linearized system dynamical description of Eq. 3. For this problem the solution to the state estimation problem found in Ref. 17 was used. The Kalman filter dynamics are described by

$$\delta \hat{x}(t) = A\delta \hat{x}(t) + B\delta u(t) + K(z(t) - E\delta \hat{x}(t))$$

$$\delta \hat{y}(t) = C\delta \hat{x}(t) + D\delta u(t)$$
(8)

The $n \times 1$ constant gain matrix K is a function of the known A and B matrices and the specified system noise statistics.

Model-Mismatch Compensation

The linear perturbational model (Eq. (3)) represents an approximate relationship between state, input, output and measurement perturbations because secondand higher-order terms were neglected in the Taylor series expansion. Derivation of the Kalman gains, however, assumes that Eq. (3) represents an exact model of the physical process. To compensate for this inherent model-mismatch ann x l vector e, which represents the resulting error between actual and estimated state perturbations, is defined. This definition leads to a second linear estimation problem -- i.e., estimation of the error vector e -- described by

$$\dot{e}(t) = (-KE+A)e(t) - K\eta(t) + B\xi(t) + v(t)$$

$$\dot{v}(t) \stackrel{\triangle}{=} \gamma(t)$$

$$r(t) = Ee(t) + \eta(t)$$

$$r(t) \stackrel{\triangle}{=} \delta z(t) - E\delta \hat{x}(t)$$
(9)

where the n-dimensional vector γ represents white zero-mean Gaussian n-dimension model-mismatch uncertainty with intensity N; i.e., E $\gamma(t)\gamma'(\tau) = N(t)\delta(t-\tau)$. The designer selects the model-mismatch matrix N to reflect uncertainty about the model dynamics; i.e., the larger the intensity matrix N the more uncertain the designer is that the system model is the same as the physical process. The Kalman filter for the system described by Eq. (9) is given by

 $\hat{\hat{e}}(t) = (-KE+A)\hat{e}(t) + \hat{v}(t) + K_1(r(t)-E\hat{e}(t))$ $\hat{\hat{v}}(t) = K_2(r(t)-E\hat{e}(t))$ (10)

where the n x ℓ and K₂ matrices are upper and lower partitions, respectively, of the 2n x ℓ Kalman filter gain matrix. An improved perturbational state estimate is obtained by adding the estimated error to the original perturbational state estimate. After algebraic manipulation — which alters the Kalman gains and isolates the compensator gains — the estimator is described by

$$\delta \hat{\hat{\mathbf{x}}}(t) = \mathbf{A}\delta \hat{\mathbf{x}}(t) + \mathbf{B}\delta \mathbf{u}(t) + \mathbf{K}_{\mathbf{f}}(\delta \mathbf{z}(t) - \mathbf{E}\delta \hat{\mathbf{x}}(t)) + \int_{0}^{t} (\mathbf{K}_{\mathbf{c}}(\delta \mathbf{z}(\tau) - \mathbf{E}\delta \hat{\mathbf{x}}(\tau))d\tau$$
 (11)

where the n-dimensional vector $\hat{\boldsymbol{\delta}}$ is the improved perturbational state estimate and

$$K_{f} = K + K_{1}$$
 $K_{c} = K_{2}$ (12)

The derivation of Eq. (11) is presented in Ref. 19.

Integrating Eq. (11) along the system trajectory leads to

$$\hat{x}(t) = f(\hat{x}(t), u(t), 0) + K_f(z(t) - h(\hat{x}(t))) + \int_0^t K_c(z(\tau) - h(\hat{x}(t))) d\tau$$
 (13)

where

$$f(\hat{x}(t),u(t),0) = \int_{0}^{t} (A\delta\hat{x}(\tau) + B\delta u(\tau))\delta\tau$$

$$h(\hat{x}(t)) = \int_{0}^{t} E\delta\hat{x}(\tau)\delta\tau$$
(14)

and f, h represent the system model employed in the filter. The Kalman and compensator gains K_f and K_c are functions of the operating condition. The block diagram of this filter is shown in Fig. 2. The implementation requirements for this nonlinear filter depend on the form assumed for the deterministic system models f and h.

The PLPO techniques described above and used to generate the control law of Eq. 6 are now applied to the filter equation. The procedure requires formulating expressions for the two functions shown in Eq. 14. Path integrals of the linearized system dynamics (Eq. (3)) at a series of operating points define the piecewise-linear model. From Eq. (3) the piecewise-linear model dynamics are given by

$$f(\hat{x}(t), u(t), 0) = \int_{\hat{x}(0)}^{\hat{x}(t)} A(\hat{x}_{j}) d\hat{x} + \int_{u(0)}^{u(t)} B(\hat{x}_{j}) du$$

$$h(\hat{x}(t)) = \int_{\hat{x}(0)}^{\hat{x}(t)} E(\hat{x}_{j}) d\hat{x} + h(\hat{x}(0)).$$
(15)

Since the A, B, C, D, and E matrices are defined at a series of design points along the system steady-state operating line, interpolation based on a selected state \mathbf{x}_j is used to determine values for these matrices between design points. The filter gains \mathbf{K}_f and \mathbf{K}_c are also functions of operating condition.

Combined Estimation and Control

The third and final step in control synthesis for stochastic nonlinear systems using the separation approach would involve combining the PLPO deterministic control and stochastic estimation algorithm developed in this study into a unified feedback controller. The resulting stochastic controller must estimate the system states and outputs from the noise-corrupted system measurement data. Based on these estimated system variables, the control must generate actuator inputs to achieve satisfactory system performance. The overall system structure is shown in Fig. 1.

Summarizing the results of the control and filter design outlined above produces the combined nowlinear equation to be implemented

$$u(t) = \int_{\hat{x}(0)}^{\hat{x}(t)} G(\hat{x}(\tau)) d\hat{x}(\tau) + u(0)$$
(16)

$$\hat{\hat{x}}(t) = f(\hat{x}(t), u(t), 0) + K_f(z(t) - h(\hat{x}(t)))
+ \int_0^t K_c(z(\tau) - h(\hat{x}(t))) d\tau$$
(17)

where f, h are defined in Eq. 15 for the piecewise linear model.

Digital Implementation

The nonlinear equations to be implemented in the microprocessor are given by Eqs. 16 and 17. The implementation is based on using rectangular (Euler) integration which is the simplest form of integration in terms of the computations required per sample interval.

To code the estimation algorithms on a digital computer the filter equations for state estimation may be represented by (1) state prediction equations, and (2) state update equations. Filter equations based on Euler integration which predict state variables at time $t+\Delta t$, given measurements to time t, are described by

$$\hat{\mathbf{x}}(t + \Delta t/t) = \hat{\mathbf{x}}(t/t) + \mathbf{f}(\hat{\mathbf{x}}(t/t), \mathbf{u}(t), 0) \Delta t$$
 (18)

where Δt represents the known sampling interval. If a more accurate integration method (e.g., Runge-Kutta) is employed, the sampling interval may be increased; however, the computational requirements will also be increased. The notation (t + $\Delta t/t$) represents filter prediction of system states at time t + Δt given measurements to time t. The filter update equations are given by

$$\hat{\mathbf{x}}(\mathbf{t} + \Delta \mathbf{t}/\mathbf{t} + \Delta \mathbf{t}) = \hat{\mathbf{x}}(\mathbf{t} + \Delta \mathbf{t}/\mathbf{t}) + (\mathbf{K}_{\mathbf{f}}\Delta \mathbf{t})\mathbf{r}(\mathbf{t} + \Delta \mathbf{t}) + \sum_{\tau=0}^{\mathbf{t}+\Delta \mathbf{t}} (\mathbf{K}_{\mathbf{c}}\Delta \mathbf{t}^2)\mathbf{r}(\tau)$$

$$\mathbf{r}(\mathbf{t} + \Delta \mathbf{t}) = \mathbf{z}(\mathbf{t} + \Delta \mathbf{t}) - \mathbf{h}(\hat{\mathbf{x}}(\mathbf{t} + \Delta \mathbf{t}/\mathbf{t})).$$
(19)

Equations (18) and (19) indicate that the state prediction computational requirements are primarily dependent on the system model in the filter; whereas, the state update computational requirements are primarily dependent on the gain calculation. Output and measurement estimate computational requirements are primarily dependent on the output and measurement models employed in the filtering algorithm. Therefore, computational requirements for the filtering algorithms are functions of (1) the system model employed in the filter, and (2) filter gain calculation. Digital implementation of the control equation follows from Eq. 16 again assuming Euler integration

$$u(t + \Delta t) = u(t) + G(\hat{x}_j)(\hat{x}(t + \Delta t/t + \Delta t) - \hat{x}(t/t))$$
 (20)

Equation 20 indicates that the control computational requirements are primarily dependent on the gain calculation. All gain scheduling is assumed to be implemented using linear univariate interpolation. For any of the matrices contained in Eqs. 18 thru 20 the algorithm for gain calculation is

$$p = m_{i} (\hat{x}_{j} - (x_{j})_{i}) + P_{i}$$

$$m_{i} = \frac{P_{i+1} - P_{i}}{(x_{j})_{i+1} - (x_{j})_{i}}$$
(21)

where p denotes any matrix parameter, and the index i represents a steady-state operating condition such that $(x_j)_i \leq \hat{x}_j \leq (x_j)_{i+1}$.

Microprocessor Requirements

The requirements placed on a single microprocessor to implement the non-linear control and estimation equation are discussed in this section. This study did not include an investigation of partitioning the computational tasks among two or more microprocessors although this option is a potentially powerful alternative.

The microprocessor requirements which are discussed include (1) number of computations required per sample interval and (2) memory requirements necessary for storing the gains and the sampled state values. The methodology closely follows that developed in Ref. 16. The number of computations required per sample interval determine the time to execute the control and filter equation. This time must be less than the sample time which is used in the closed loop design. The sample time in turn must be sufficiently fast to guarantee that (1) the dynamics of the physical plant are adequately represented by the sampled values and (2) the digital implementation of Eqs. 18 through 20 is stable. A technique for examining the stability of the equation was presented in Ref. 16. This technique can be used to study the stability of these different equations for a particular system description. Guaranteeing that the sample update is fast enough to adequately represent the nonlinear dynamics of the physical system requires that detailed simulation be used. For linear systems the evaluation can be achieved without recourse to detailed simulation by considering the eigenvalues of the system. The maximum sample time in this case can be determined by application of the sampling theorem.

Once the maximum sample time is determined the applicability of a particular microprocessor can be evaluated. This evaluation requires first determining the number of computations required per sample interval. These computations consist of signed multiplication and signed addition as well as delay associated with the input and output operations.

Computational Requirements

The computational requirements for signed multiplication and signed addition are determined from Eqs. 18 through 21. This determination involves the systematic analysis of these equations in terms of the dimensions of the dynamic variables and matrices.

In Phase I it was shown that the linear discrete controller implementation requirements could be altered by transforming the estimated state vector. To change state coordinates for the linear system the estimated state vector $\hat{\mathbf{x}}$ is transformed through the equation

$$\hat{\mathbf{w}} = \mathbf{T}^{-1} \hat{\mathbf{x}} \tag{22}$$

where T is an n x n nonsingular constant matrix. This technique was used to transform the system description to both Jordan canonical form and the Companion form. The digital implementation requirements were then evaluated for the linear system in the Standard, Jordan, and Companion forms.

For the transformation technique to be applicable to the nonlinear case requires that a T matrix be stored in the microprocessor as a function of operating point. This requirement follows from the fact that the linearized system dynamical description of Eq. 3 is a function of operating point.

Therefore, for nonlinear implementation additional memory is required if the transformation technique is to be used. The approach taken in developing the implementation requirements for the nonlinear system is to consider only the standard form of the system. This avoids the necessity to store the T matrix as a function of operating point.

Filter computational requirements per sampling interval are determined from the prediction and update relationship of Eqs. 18 and 19. The gain matrices K_f and K_c are scheduled according to the univariate interpolation algorithm of Eq. 21. The computational operations for implementing the control law of Eq. 20 consist of matrix/vector multiplication and vector addition as well as the interpolation required by Eq. 21 for scheduling the matrix G between operating points.

In addition to the operations associated with the filter and control equation there are operations required for input and output (I/O) between sample intervals. These operations consist of measuring & outputs of the plant and providing n inputs to the plant. These I/O operations are used for both the filter and control equations. Table I summarizes the computational operations required for each sample interval of the PLPO implementation. They consist of multiplications, additions, and I/O operations. These operations may be used to predict the computation time required by the microprocessor.

Computational times are evaluated for any candidate microprocessor once the benchmark times for signed multiplication and signed addition are determined. The I/O times are dependent on the characteristics of the A/D and D/A converters used. The characteristics of a representative set of microprocessor and A/D and D/A converters are shown in Ref. 16 and repeated in Appendix A.

Memory Requirements

Memory requirements depend upon (1) the system model and (2) the computer code including temporary storage to implement the control and filter algorithms. System model memory requirements are a function of model structure as well as

system state, input, and output orders. System model requirements will not vary with microprocessor. On the other hand, the computer code and temporary storage requirements will vary with microprocessor as well as system model.

Memory may be either random access memory (RAM) or programmable read only memory (PROM). RAM is generally used to store temporary data such as measurements and intermediate calculations. PROM would be used for storing constants necessary for implementing the control and filter equations. Memory requirements are determined from the filter and control relationships of Eqs. 18 through 20 and the interpolation algorithm of Eq. 21. The results are summarized in Table II where the type of memory, either RAM or PROM is also indicated. For the scheduled gain matrices, G, K_f and K_c the total number of storage locations depends on the number of operating points used in designing the PLPO structure. In Table II, K represents the number of steady-state operating points selected for system linearization.

LINEAR SYSTEM RESULTS

The Phase I work reported in Ref. 16 dealt with the microprocessor requirements for implementation of modern control for linear systems. A major task conducted under the present research was to verify the analysis and prediction of microprocessor requirements for linear systems. The validation was aimed at verifying the prediction for two problems. One problem was a single input second order system and one was a four input five state system respresenting linearized F100 engine dynamics. The second order validation consisted of implementing the modern control an Intel 8080 microprocessor. An analog simulation of the second order system was interfaced to the microprocessor. The control for the four input fifth order system was implemented on a Digital Equipment Corporation LSI 11/2 microprocessor. The linearized F100 engine dynamics were simulated on an Electronics Associates Incorporated Model 1000 analog computer.

This section reviews the microprocessor requirements for implementing modern control for linear systems. The validation results are presented by first discussing the matrix and vector mathematical algorithms used in the microprocessor. Results from this implementation phase are then presented and compared with the predictions.

Microprocessor Requirements-Linear Systems

For linear systems the matrices of Eq. 3 are constant and the $^{\delta}$ notation does not apply. Therefore the filter and control dynamics can be represented by

$$\hat{x}(t) = F\hat{x}(t) + H(z(t) - E\hat{x}(t))$$

$$u^*(t) = G\hat{x}(t)$$

$$E^{\triangle} A + BC$$
(23)

The formulation developed in Phase I included provision for transforming the coordinate system using a transformation matrix T. The reason for the transformation is to represent the system by a new state vector

$$\hat{\mathbf{w}} = \mathbf{T}^{-1} \hat{\mathbf{x}} \tag{24}$$

whose dynamic equation may be of a form to reduce the number of computations required in implementing the filter and control equation. The transformed equations, from Eqs. 23 and 24 are

$$\hat{\mathbf{w}}(t) = \mathbf{F}_{T}\hat{\mathbf{w}}(t) + \mathbf{H}_{T} (\mathbf{z}(t) - \mathbf{E}_{T}\hat{\mathbf{w}}(t))$$

$$\mathbf{u}(t) = \mathbf{G}_{T}\hat{\mathbf{w}}(t)$$
(25)

where $F_T = T^{-1}(F)T$, $H_T = T^{-1}H$, $E_T = ET$ and $G_T = GT$. However, the matrix F_T depends upon the selected transformation matrix T. Note that T=I results in the standard form, i.e., $F_T = F$.

Implementing the control and estimation dynamics of Eq. 25 is done by solving the filter equation in two steps as discussed earlier. This process involves solving (1) state prediction equations and (2) state update equations. The result may be expressed in the following form

$$\hat{w}(k+1) = \phi_{D} \hat{w}(k) + H_{D} z(k+1)$$

$$u(k+1) = G_{D} \hat{w}(k+1)$$
(26)

where

$$\phi_{D} = (I - T^{-1} \text{ HET}\Delta t) (I + \phi)$$

$$\phi = T^{-1} \text{ FT}\Delta t + \frac{(T^{-1}\text{FT})^{2}\Delta t^{2}}{2!} + \frac{(T^{-1}\text{FT})^{3}\Delta t^{3}}{3!} + \dots$$

$$H_{D} = T^{-1} \text{ H}\Delta t$$

$$G_{D} = GT$$
(27)

 $\label{eq:GD} \mathbf{G}_{D}^{} = \mathbf{G}\mathbf{T}$ and k denotes the \mathbf{k}^{th} sample time.

The matrices of Eq. 27 are computed off-line and stored in the microprocessor for use in implementing the filter and control relationships of Eq. 26.

Analytic techniques were established in Phase I for predicting the microprocessor requirements for implementing Eq. 26. The specific requirements addressed included (1) accuracy (word length) requirements, (2) computational requirements, and (3) memory requirements.

Accuracy Requirements

The effect of finite word length on the overall response of the controlled system was evaluated using a performance index approach. A Univac 1100 series digital computer with a 36 bit word length was used to generate system response against which the responses for smaller word length configuration could be compared. The performance index

$$J = \int_{0}^{\infty} [(y* - yt)' \ Q(y* - yt) + (u* - ut)' \ R(u* - ut)]dt$$
 (28)

where

 y_1^* = output response vector with 36-bit controller

 y^{\dagger} = output response vector with b-bit controller

u* = control vector with 36-bit controller

U[†] = control vector with b-bit controller

Q,R = weighting matrices

was defined. The performance index J represents performance degradation due to finite word lengths less than the accurate 36-bit word length. As the number of bits in the computer word approaches 36, J approaches zero.

A procedure was developed for reducing this integral equation to an algebraic equation. The resulting expression allows the numerical evaluation of Eq. 28 to be performed very simply on the computer without the need to simulate the actual system, control, and filter dynamics.

Computational Requirements

The computational requirements for implementing Eq. 26 were expressed in terms of the number of multiplications, and additions required as well as the I/O operations required for each sample interval. Three cases were considered corresponding to three tranformation matrices T, defined in Eq. 25. The three structures were (1) Standard, (2) Jordan canonical, and (3) Companion. Table III summarizes the results for the number of operations required for the LQG implementation.

Memory Requirements

Total storage requirements were defined for the filter and control dynamics represented by Eq. 26. The memory requirements resulted from analysis of the dimension of the vectors and matrices of Eq. 26. The storage was required for (1) past state estimates, w(k), (2) current state estimates, w(k+1), (3) measurements z(k+1), (4) control u(k+1), and the gain (G_D) and filter matrices (ϕ_D, H_D) of Eq. 26.

The memory requirements for implementing LQG control and estimation are summarized in Table IV for the three system structures discussed above.

APPLICATION AND VERIFICATION OF MICROPROCESSOR REQUIREMENT PROCEDURES

The procedures reviewed in the previous section were applied to two candidate systems and the microprocessor requirements were predicted. The systems selected for examination were (1) a single input second order plant and (2) a four input fifth order F100 turbofan engine linearized at sea level static military operation. The verification of the procedures was carried out for both of the selected examples. This verification consisted of (1) simulating the system dynamics on an analog computer, (2) implementing (coding) the control and filter equation in a microprocessor, and (3) comparing the results with those predicted using the procedures discussed above.

Before discussing the results of the validation experiments it is important to describe the matrix and vector operations which are required to implement the control and filter dynamics of Eq. 26. The operations required i.e., vector/matrix multiplication and vector addition are generic to the structure of the problem. Any efficiencies which can be realized in performing these operations will translate directly into reduced computational time.

A block diagram of the complete simulation system is shown in Fig. 3. The system dynamics are simulated on an analog computer. Control and filter dynamics are implemented in a microprocessor which is interfaced to the analog computer using A/D and D/A converters as shown.

The software to implement the control and filter dynamics consists of three matrix/vector multiplications ($\phi_D w$, $H_D z$, and $G_D w$) and one vector addition ($\phi_D w + H_D z$). Other operations are required to save past state estimates, service the clock, interrupt and output the control via the D/A converter. The clock interrupt service routine (1) performs a timing check to assure that all control computations are completed within the sample time and (2) reads in measurement data via the A/D converter.

The overall block diagram of the control software described above is shown in Fig. 4. The block diagram of the matrix/vector multiplication code is displayed in Fig. 5. Figure 5 includes several minor changes (e.g., the order in which pointers are initialized and updated) which were made in the matrix/vector multiplication block diagram presented in the Phase I report. These changes result in more efficient microprocessor implementation. The matrix/vector multiplication algorithm is not changed but rather the way the algorithm is implemented has been slightly modified. Block diagrams of the vector addition code, the store state estimates, and the interrupt service routine are shown in Fig. 6.

Second Order System

The second order system dynamics in the form of Eq. 3 are represented by the A, B, C, D and E matrices of Table V. The control and filter dynamics for the second order system are in the form of Eq. 26. The constant matrices \mathbf{G}_{D} and \mathbf{H}_{D} are also shown in Table V.

The second order system control and filter equations were coded on an Intel 8080 microprocessor with software multiply. The second order system dynamics were implemented on a special purpose analog computer.

The improvements discussed above in the matrix/vector multiplication algorithms were incorporated into the 8080 code. These improvements result in reduced execution time. The code changes include (1) more efficient use of the registers in the multiplication algorithm (11.5% reduction in cycle time) and (2) more efficient memory (data array) accessing as well as more efficient use of the registers in the matrix/vector multiplication algorithm (reduction in cycle time dependent on system order, e.g., a 24% reduction in the matrix/vector multiplication control algorithm is obtained for a 2 x 2 matrix times a 2 x 1 vector). In addition, the interface software was added to the preliminary code. A complete listing of the code is shown in Appendix B.

Comparison of Results

The analytic procedures developed in Ref. 16 were applied to the second order system. Conclusions resulting from applying these prediction techniques were (1) an 8 bit word length is sufficient, (2) a minimum sample time based on the number of computations of 4.25 ms was predicted for the 8080, and (3) 490 words of memory would be required.

The validation of the prediction techniques consisted of (1) comparing the execution times and memory requirements between the predicted values and those resulting from the actual implementation and (2) comparing dynamic response between that predicted and that actually achieved. This dynamic response comparison was used to verify the accuracy requirement predictions.

Table VI summarizes the predicted values for computation time and memory requirements and also shows the computation time and memory actually achieved with the implemented system. The minimum predicted sample time of 4.25 ms compares well with the measured value of 4.7 ms.

The actual memory requirements are also in good agreement with the predicted values. Actual memory used was 483 words of which 468 were PROM and 15 were RAM. The predicted values were 490 words including 15 words of RAM and 475 words of PROM.

Validation of the word length requirements shows that the prediction techniques are quite accurate. This is important since the word length prediction was treated using an analytic formulation based on the cost function approach described above. This allows the designer to simply solve an algebraic matrix equation to assess the effect of finite word length. Application of this technique to the second order system showed that an 8 bit microprocessor was adequate for implementing the second order control and filter equations. An 8 bit microprocessor was simulated as described in Ref. 16 and the resulting output response was recorded. Figure 7 shows this predicted response and also shows the response recorded using the analog computer/8080 system. The good agreement between these results indicate that the prediction techniques are valid for assessing the effect of word length on system response.

Fifth Order System

Validation of the prediction techniques was also carried out for a four input fifth order linear system. The system dynamics represent the linearized description of an F100 turbofan engine operating at sea level static military operating conditions. The linearized engine dynamic description, in the form of Eq. 3 are represented by the A, B, C, D and E matrices of Table VII.

Simulating these dynamics on the EAI 1000 analog computer requires implementing the A and B matrices of Table VII. The number of amplifiers and potentiometers required for instrumenting the matrices as shown exceeded the number available on the EAI 1000. The large number of analog computer components required is a result of the A and B matrices being in standard form i.e., all elements of the matrices were nonzero. An attempt was made to transform the system description to both the Jordan canonical form and the Companion form by using the appropriate T matrix transformation as described in Eq. 24. This approach did not work, however, since the resultant closed loop FT matrix of Eq. 24 became ill conditioned. That is, the magnitude of the elements of Fr varied over a wide range. This wide range of values in turn required more than 16 bits of accuracy to allow stable closed loop operation. The number of analog components required was reduced by eliminating several of the smallest terms in the A and B matrices and approximating other terms. The resultant A and B matrices are shown in Table VIII. These matrices are compatible with the number of components available on the EAI 1000. Since the control (Gn) and filter matrices (H_D, Φ_D) of Eq. 26 are dependent on the A and B matrices, new values for these matrices were computed for the modified A and B matrices. The matrix values for G_D , H_D , and ϕ_D are shown in Table IX. These values are those used in the microprocessor implementation.

The modified system dynamics were required to allow analog computer implementation. However, to verify that the changes did not significantly affect the dynamic description of the system a comparison was made between the responses

The Marie of the Control of the State of the

for the original A and B matrices and modified versions. Figure 8 depicts the close agreement between the two cases for the \mathbf{x}_1 state (incremental fan turbine inlet temperature) response. Other results which were obtained show similar agreement and it was concluded that changing the A and B matrices did not noticeably alter the closed loop dynamics.

Prior to implementing the closed loop experiment the analog simulation was checked against the expected response to verify that the analog representation was correct. This was done by comparing the unforced (u=0) response of the analog system against a digital computer simulation. This procedure was of considerable value in uncovering and correcting wiring errors on the analog computer. The analog computer implementation is shown in Fig. 9. The analog simulation of the unforced system compares well with the digital simulation. Figure 10 compares the x_5 state (incremental after burner pressure) responses.

Microprocessor Implementation

Based on application of the prediction techniques it was decided to use an LSI-11 16 bit microprocessor with hardware multiply and divide options. The matrix/vector operation, the interrupt service routines and the state store algorithm discussed previously and shown by the flowcharts of Figs 4, 5, and 6 were coded on the LSI-11. Several changes were incorporated into the final version of the code compared to the preliminary code developed during Phase I. Three changes were in the areas of (1) maximizing the use of registers to reduce the memory access times and (2) improving the techniques for table accessing. Additionally, since the hardware multiply and divide option of the LSI-11 are for unsigned operations, code was developed to enable the handling of signed operations. The complete code for the LSI-11 implementation is shown in Appendix C.

Comparison of Results

Comparisons are presented for (1) accuracy requirements, (2) computational speed, and (3) memory requirements. In each case the comparison is made between the resulted predicted using the techniques of Phase I and the results obtained from the actual implementation. Application of the prediction techniques indicate that the fifth order system can be implemented for the standard structure of the system using (1) 16 bit word length, (2) a minimum sample time of 9.68 ms based on the computational requirements and (3) 304 words of memory (183 words of PROM and 121 words of RAM).

The predicted results for a simulated 16 bit word length are compared against results from the EAI 1000/LSI-11 system. The predicted results were obtained by using the Phase I simulation techniques and the modified system dynamics discussed above.

Accuracy requirements are compared as in the second order case by examining the dynamic responses. Figure 11 shows the predicted response of the F100 engine model perturbational afterburner pressure response (x5) and the response obtained from the hardware implementation. Additional comparisons are shown in Figs. 12 through 14. Figure 12 compares the small signal fan speed response and Fig. 13 shows the small signal fan turbine inlet temperature response. Figure 14 compares the compressor variable vane (u₂) control The agreement between the predicted and actual responses is good considering that the voltage levels of the responses on the analog computer were 100 mV and less. There low levels were required to keep the maximum voltage levels in the analog simulation below the 5 volt power supply limit of the computer. These low voltage levels result in a lower signal to noise ratio at the outputs of the A/D converters than would be possible with higher signal levels. This noise represents measurement noise analogous to the $\eta(t)$ term in the definition of the system dynamics of Eq. 3. The optimal estimator gains calculated for the fifth order system were predicted on a noise covariance of 0.01. The actual noise present in the analog simulation was beyond the control of the experiment and therefore the precalculated gains are not optimal for the analog system noise levels. With this proviso, however, it can be concluded that the agreement between the predicted responses and the actual responses is good. This validates the conclusion that a 16 bit word is adequate for the fifth order system and indicates that the accuracy prediction techniques developed in Phase I are applicable.

Computational requirements as predicted by the Phase I techniques were 9.68 ms to perform the control and filter calculations. This time consisted of 8.23 ms for arithmetic calculation and 1.45 ms for input and output operations. The computation time for the experiment was determined using a frequency counter. The time required to execute the code was 14.45 ms and the input and output operations required 1.32 ms. The total time between samples required by the system was therefore 15.77 ms. The large discrepancy (15.77 ms vs 9.68 ms) is due to the nature of the hardware multiply instruction. The Phase I estimate of the time required for a multiply was 40.5 µs. However, this figure was in error. The actual time required in the LSI-11 for a hardware multiply ranges from a low value of 37.0 µs to a maximum of 68.0 µs. The exact value for a multiply depends on the value of the two numbers being multiplied. In addition, the Phase I prediction did not account for the additional software required to achieve a signed multiplication. This added software increases the multiply time to 161 µs on the LSI-11. Since there are 70 multipliers required per sample interval the Phase I estimate was in error by 8.43 ms which is the difference between the actual multiply time of 161 µs and the Phase I time of 40.5 µs times the 70 multiplication required. Using the correct value of 161 us and applying the Phase I prediction techniques results in a total time of 16.6 ms. This figures compares well with the measured time of 15.77 ms.

Table X summarizes the comparison between the predicted computation times and those determined in the equipment. This table shows the originally predicted times which did not account for the additional multiply software and the values predicted after the additional software was involved in the analysis. Table X also shows the predicted and actual memory requirements for the fifth order system.

Memory requirements as predicted using the Phase I methods were 304 16 bit words of which 121 words would be RAM and 183 would be PROM. The actual LSI-11 memory requirements are 422 words of which 109 words are RAM and 313 words are PROM. The reduction in the number of RAM words required (109 compared to 121) is a result of the efficient use of resisters for temporary storage. The increase in PROM in the experiment (313 compared to 183) was due primarily to the software required for implementing the signed multiply and divide operations (46 words required) and the scaling routines necessary to interface with the D/A converters (55 words).

Table X shows the memory requirements using the original prediction techniques, updated prediction techniques and those actually required. The original prediction values were updated to include the additional memory required to store the code for implementing the signed multiply and divide routines (46 words) and the scaling software required (55 words) to interface to the D/A converters. Both of these operations are in the category of program code rather than storage required for the basic LQG structure. These additional requirements result from the specific characteristics of the microprocessor used. In general there is no effective way to predict the additional memory (or computation time) without detailed consideration of the particular microprocessor.

In the Phase I effort it was concluded that the memory required to implement LQG control on microprocessors was modest. Although the experiment summarized above did reveal that additional memory is required, the increase is small and the conclusion that memory requirements are not significant is unchanged. The caution to be exercised in predicting requirements is that subtle characteristics of the particular microprocessor selected for the application should be considered in arriving at detailed estimates.

In summary, the Phase I technique for analytically predicting word length requirements agrees very well with the actual results of the validation. The techniques for estimating computational requirements and memory, once updated to account for particular microprocessor characteristics (i.e., multiply times for signed operations) were found to produce good estimates for the actual requirements.

REFERENCES

- Michael, G. J. and G. S. Sogliero: Key Control Assessment for Linear Multivariable Systems. Proceedings, 1976 IEEE Conference on Decision and Control, December 1-3, 1976, Clearwater Beach, Florida, pp. 1120-1125.
- Michael, G. J. and F. A. Farrar: An Analytical Method for the Synthesis of Nonlinear Multivariable Feedback Control. United Technologies Research Center Report M941338-2, Final Technical Report prepared under Department of the Navy Contract N00014-72-C-0414, June 1973 (DDC Accession No. AD 962797).
- Michael, G. J. and F. A. Farrar: Stochastic Regulation of Nonlinear Multivariable Dynamic Systems. United Technologies Research Center Report ONR-CR215-219-4P, Final Technical Report prepared under Department of the Navy Contract N00014-73-C-0281, March 1976.
- 4. Michael, G. J. and F. A. Farrar: Development of Optimal Control Modes for Advanced Technology Propulsion Sytems. United Technologies Research Center Report N911620-2, Annual Technical Reported prepared under Department of the Navy Contract N00014-73-C-0281, March 1974 (DDC Accession No. AD 775337).
- Farrar, F. A. and G. J. Michael: Large-Signal Estimation for Stochastic Nonlinear Multivariable Dynamic Systems. Office of Naval Research Report ONR-CR215-247-1, Annual Technical Report prepared under Department of the Navy Contract N00014-76-C-0710, March 1977.
- 6. Farrar, F. A. and G. J. Michael: Nonlinear Stochastic Control Design for Gas Turbine Engines. Office of Naval Research Report ONR-CR212-247-2F, Draft Final Technical Report prepared under Department of the Navy Contract N00014-76-C-0710, submitted to ONR, June 1978.
- 7. Farrar, F. A. and G. J. Michael: Multivariable Control Synthesis for F100 Engine Stability Reset Operation. United Technologies Research Center Report UTRC77-23, Technical Report prepared under P&WA Government Products Division Engineering Order Supplement No. 802707, March 9, 1977.
- 8. DeHoff, R. L. and W. E. Hall: Multivariable Control Design Principles with Application to the F100 Turbofan Engine. Proceedings, 1976 Joint Automatic Control Conference, Lafayette, Indiana, July 1976.
- 9. Spang III, H. A.: The Challenge of Microprocessors. IEEE Control Systems Newletter, October 1976.

REFERENCES (Cont'd)

- Barnich, R. G.: Designing Microcomputers into Your Products. Instrument Society of America ISA-76 International Conference and Exhibit, Houston, Texas, October 1976.
- 11. Grossman, R. M.: "Micro" Peripherals Moving to Meet the Microcomputer Challenge, EDN. February 5, 1976, pp. 38-47.
- 12. Bishop, P. G.: Microprocessors: Computing in Miniature. Physics in Technology, March 1976, pp. 47-53.
- Larson, A.: Some Questions and Answers about Microprocessors. Proceedings of the IFAC 6th World Congress, Boston/Cambridge, Massachusetts, August 1975.
- 14. Hopkins, H. G.: An 8 Bit Microprocessor Identifies Second Order Transfer Functions. Proceedings, 1976 IEEE Conference on Decision and Control, Clearwater, Florida, December 1976.
- 15. Farrar, F. A.: Microprocessor Implementation of Advanced Control Modes. Proceedings, 1977 Summer Computer Simulation Conference, Chicago, Illinois, July 1977, pp. 339-342.
- 16. Farrar, F. A., and R. S. Eidens: Microprocessor Requirements for Implementing Modern Control Logic. United Technologies Research Center Report R79-944258-2, Final Report prepared under Air Force Office of Scientific Research Contract F49620-78-C-0017, March 1979.
- 17. Bryson, A. E., Jr. and Y. C. Ho: Applied Optimal Control. Ginn and Company, Waltham, Mass., 1969.
- 18. Fitzgerald, R. J.: Divergence of the Kalman Filter. IEEE Trans. Auto. Control, Vol. AC-16, No. 6, December 1979, pp. 736-747.
- 19. Athans, M. A.: The Compensated Kalman Filter Symposium on Nonlinear Estimation, San Diego, September, 1971.

LIST OF SYMBOLS

A	Constant n x n matrix in linear system dynamic description
В	Constant n x m matrix in linear system dynamic description
С	Constant p x n matrix in linear system dynamic description
D	Constant p x m matrix in linear system dynamic description
E	Constant & x n matrix in linear system dynamic description
e	n x l error vector used to represent bias errors due to model mismatched Kalman filter
F	Constant n x n matrix used to describe optimal deterministic closed loop system dynamics
FT	Constant n x n matrix used to describe transformed optimal closed loop system dynamics
f	Nonlinear $n \times 1$ vector function describing rate of change of system state vector
G	Constant m x n optimal deterministic closed loop feedback gain matrix
G _D	Constant m x n optimal deterministic closed loop feedback gain matrix for microprocessor implementation
g	Nonlinear p x 1 vector function describing system output vector
н	Constant n x & Kalman filter gain matrix
н _D	Constant $n \times \ell$ Kalman filter gain matrix for microprocessor implementation
h	Nonlinear & x 1 vector function describing measurement vector
I	Identity matrix
i	General subscript
J	Performance index

LIST OF SYMBOLS (Cont'd)

R	Number of operating points used in linearizing nonlinear system
K _c	n x & compensator gain matrix for estimator with model mismatch compensation
K _f	n x $\boldsymbol{\ell}$ Kalman filter gain matrix for estimator with model mismatch compensation
K	Discrete time
£	Dimension of system measurement vector z
m	Dimension of system control vector u
n	Dimension of system state vector x
P	Dimension of system output vector y
Q	Constant p x p matrix used in J
R	Constant m x m matrix used in J
RAM	Random access memory
PROM	Programmable read only memory
T	Constant n x n transformation matrix
U	m x 1 control vector
u*	m x 1 optimal control vector
W	n x 1 transformed state vector
x	n x 1 system state vector
у	p x 1 system output vector
z	& xl system measurement vector

LIST OF SYMBOLS (Cont'd)

- n 1 x 1 sensor noise vector
- m x l process noise vector
- Constant n x n closed loop system matrix
- © Constant n x n closed loop system matrix used in microprocessor implementation
- δ () Small signal (linearized) representation of variable

TABLE I

COMPUTATIONAL REQUIREMENTS
PLPO Implementation - Standard Structure

Function	Application	Number of Operations
A11/a/a	Filter	n(n-1+5%)
Addition	Control	n(m+1)
	Filter	n ² +3nℓ
Multiplication	Control	n(m+l)
	Input	m
Interface	Output	2.

TABLE II

MEMORY REQUIREMENTS
PLPO Implementation

Wand -1.7	Memory	Number of
Variable	Туре	Locations
Past state estimate $(\hat{x}(t + \Delta t/t))$	RAM	n
Current state estimate $(\hat{x}(t + \Delta t/t + \Delta t))$	RAM	n
Measurement $(z(t + \Delta t))$	RAM	<u>e</u>
Control (u(t + \Delta t))	RAM	m
Control matrix G	PROM	₹n²
Kalman matrix K _f	PROM	Κ̃nℓ
Kalman matrix K	PROM	Knl

TABLE III

COMPUTATION REQUIREMENTS FOR LINEAR SYSTEMS Number Of Operations Per Sample Interval

St	Structure	Standard	Jordan Canonical	Companion
Addition	Filter	$n(n-1) + n(\ell-1) + n$	n(f-1) + n	(n-1) + n(l-1) + n
	Control	m(n-1)	m(n-1)	m(n-1)
Multiplication	Filter	$n^2 + n^{\ell}$	<i>l</i> u + u	n + n (
	Control	au.	шu	mu
Interface	Input	8	E	8
	Output	J	j	ب

TABLE IV

MEMORY REQUIREMENTS FOR LINEAR SYSTEMS

			Memory (Words)	
Varlable	мешогу Туре	Standard Structure	Jordan Canonical Structure	Companion Structure
Past state estimate $(\mathring{w}(k))$	RAM	u	u	u
Current state estimate $(W(k+1))$	RAM	и	u	c
Measurement (z(k+1))	RAM	d	f	f
Control (u(k+1))	RAM	Ħ	ш	E
System matrix $(\phi_{ m D})$	PROM	n ²	u	u
Kalman gain matrix (H _{J)})	· PROM	Ju	n θ	nl
Control gain matrix (Gp)	PROM	mm	mn	mn

 $\label{eq:table v} \mbox{Second-order system, control, and filter matrices}$

Matrix	Matrix	Elements_
A	0.0 -2.0	1.0 -4.0
В	0.0	
С	1.0	0.0
D	0	
E	1.0	0.0
G	-0.871	-0.207
H _D	1.130 -0.360	
ФД	.873 265	.071 .632

TABLE VI

COMPARISON OF PREDICTED AND ACTUAL COMPUTATION TIME AND MEMORY

Second Order System Intel 8080 Microprocessor

	Computation time - msec	Memory Requirements - byte		
Prediction	4.25	15	475	
Actual	4.70	15	468	

FIFTH-ORDER F100 ENGINE MODEL DYNAMICS

TABLE VII

Engine Model Linearized at Sea-Level Static Military Operation

States	Outputs	Controls
Fan turbine inlet temperature Main burner pressure	Fan stability margin	Jet exhaust area Fan inlet guide vanes
Fan speed	Compressor stability margin	Compressor variable vanes
Compressor speed	Thrust	Main burner fuel flow
Afterburner pressure	High Turbine inlet temperature	

Matrix	_		Matrix El	ements		
	-34.013	-9.303	12.037	-2.398	-1.254	
	4.389	-38.762	-4.221	28.480	14.729	
A	-4.755	2.287	-0.400	-1.546	-2.200	
	2.046	1.062	-0.729	-2.150	-0.624	
	4.150	-8.814	-0.167	7.477	1.099	
	0.766	0.546	-0.813	17.095		
	0.056	1.341	7.737	8.641		
В	0.156	-1.176	-0.416	2.034		
	-0.136	-0.024	-0.555	-0.378		
	-4.729	0.874	1.617	0.223		
	-0.042	0.063	0.013	-0.054	1.404	
	1.045	0.092	-0.060	-0.028	-0.050	
C	0.386	0.100	-0.217	0.170	-0.095	
	0.305	-0.326	-0.458	0.584	-0.538	
	-0.183	-0.564	0.394	-0.165	0.394	
	1.044	0.001	-0.013	0.002		
	-0.015	-0.003	-0.013	-0.044		
מ	-0.043	0.278	0.035	-0.155		
	-0.101	0.281	0.137	-0.041		
	0.073	0.047	-0.091	0.050		
	1.0	0	0	0	0	
	0	1.0	0	0	0	
E	o	0	1.0	0	0	
_	0	0	. 0	1.0	0	
	0	0	0	0	1.0	

TABLE VIII

APPROXIMATE FIFTH-ORDER F100 ENGINE MODEL DYNAMICS

A, B matrices represent approximations to those in Table VII which are required to allow EAI 1000 analog computer implementation

Matrix		1	Matrix Ele	ments	
	-34.013	-9.0	12.037	-2.2	0.0
}	4.4	-38.762	-4.221	28.480	14.729
A	-4.4	2.287	0.0	-1.546	-2.200
ì	2.046	1.062	-0.729	-2.2	-0.8
	4.4	-9.0	0.0	7.477	0.8
	0.0	0.0	0.0	17.095	
{	0.0	1.2	7.737	8.641	
В	0.14	-1.2	-0.5	2.034	
1	-0.14	0.0	-0.5	-0.378	
1	-4.729	0.874	1.617	0.0	

TABLE IX

CONTROL AND FILTER MATRICES FOR FIFTH ORDER IMPLEMENTATION

Matrices Used For Approximate Dynamic Description of Table VIII

Matrix		Matrix El	ements		
G _D	1.602	-1.183	2.224	0.148	5.53
	0.012	3.074	-0.341	-0.903	-0.223
	-2.942	-5.064	5.544	-2.222	8.148
	-4.362	0.749	-0.652	-0.092	-0.811
н _D	0.153 .084 .012 .001 .002	.047 .026 .007 .001	.514 .304 .087 .034 .007	.061 .093 .063 .077 -0.005	.001 .000 .000 .000
φ _Ď	.107	010	471	104	041
	180	.107	.027	.057	.696
	095	.026	.854	044	081
	.033	.042	087	.899	062
	008	085	093	.041	.650

TABLE X

COMPARISON OF PREDICTED AND ACTUAL COMPUTATION TIMES AND MEMORY

Fifth Order System LSI 11/2 Microprocessor Updated Prediction Accounts for Additional Multiply Software

	Computation Time - msec		ements - Words
_		RAM	PROM
Original Prediction	9.68	121	183
Updated Prediction	16.6	121	284
Actual	15.77	109	313

STOCHASTIC FEEDBACK REGULATOR STRUCTURE

FILTER WITH MODEL-MISMATCH COMPENSATION

SYSTEM STRUCTURE FOR DEMONSTRATING MICROPROCESSOR CONTROL

CONTROL CODE BLOCK DIAGRAM

.....

BLOCK DIAGRAM FOR MATRIX/VECTOR MULTIPLICATION

79-08-146-14

BLOCK DIAGRAM FOR VECTOR ADDITION, STATE STORE AND INTERRUPT SERVICE

TC = TIME TO EXECUTE BLOCK 1

AD = TIME TO EXECUTE BLOCK 2

DA = TIME TO EXECUTE BLOCK 3

COMPARISON OF PREDICTED AND ACTUAL SECOND ORDER OUTPUT RESPONSE

RESPONSE TO INITIAL CONDITION $X_O = (0.5, 0.5)$ STANDARD STRUCTURE WITHIN CONTROLLER t = 0.1 sec. WORD LENGTH = 8 BITS

F100 ENGINE MODEL FAN TURBINE INLET TEMPERATURE RESPONSE

ORIGINAL A&B MATRIX vs. MODIFIED A&B MATRIX INITIAL CONDITION X = 0.1 $\Delta t = 0.025$ sec. WORD LENGTH = 16 BITS

ORIGINAL MATRIX RESPONSE, UNIVAC SIMULATION

———— MODIFIED MATRIX RESPONSE, UNIVAC SIMULATION

FIFTH ORDER ENGINE ANALOG SIMULATION

80-4-55-15

THIS PAGE IS BETT QUALITY PRACTICABLE FROM COLL I CALLED TO DES

F100 ENGINE MODEL AFTER BURNER PRESSURE RESPONSE

ANALOG COMPUTER PROGRAM VERIFICATION

UNIVAC ZERO INPUT vs. ANALOG COMPUTER ZERO INPUT

INITIAL CONDITION X = 0 1

1 = 0.025 sec, WORD LENGTH = 16 BITS

UNIVAC REPSONSE WITH ZERO INPUT

ANALOG COMPUTER RESPONSE WITH ZERO INPUT

F100 ENGINE MODEL AFTER BURNER PRESSURE RESPONSE

UNIVAC SIMULATED RESPONSE vs. ANALOG COMPUTER RESPONSE INITIAL CONDITIONS. X=0.1 t=0.025 sec. WORD LENGTH = 16 Bits

F100 ENGINE MODEL FAN SPEED RESPONSE

UNIVAC SIMULATED RESPONSE vs. ANALOG COMPUTER RESPONSE INITIAL CONDITIONS: X=0.1 t=0.025 sec. WORD LENGTH = 16 BITS

F100 ENGINE MODEL FAN TURBINE INLET TEMPERATURE RESPONSE

UNIVAC SIMULATED RESPONSE vs. ANALOG COMPUTER RESPONSE INITITAL CONDITIONS. X=0.1 t=0.025 sec. WORD LENGTH ≈ 16 BITS

F100 ENGINE MODEL COMPRESSOR VARIABLE VANE PARAMETER

UNIVAC SIMULATED RESPONSE vs. ANALOG COMPUTER RESPONSE INITIAL CONDITIONS. X=0.1 t=0.025~sec. WORD LENGTH = 16 BITS

UNIVAC SIMULATED RESPONSE

ANALOG COMPUTER RESPONSE

APPENDIX A

MICROPROCESSOR SURVEY

Characteristics of (1) microprocessors, (2) A/D and D/A converters, and (3) hardware multipliers are presented in this Appendix. The characteristics tabulated here were obtained from Electrical Design News (EDN) 1976-1978 as well as from TRW product sheets. Microprocessor characteristics — including word length, internal registers, indexed addressing capabilities, and multiply instruction capability — are listed in Table A-I. The A/D and D/A characteristics — including word length, conversion time, and technology — are shown in Table A-II. Table A-III displays multiplier characteristics including word length, multiply time, and technology.

TABLE A-I

REPRESENTATIVE MICROPROCESSORS

						_		_						_		
ADC QhdD-nO	z	Z	z	z	Z	T) A	z	Z	z	Z	z	z	z	z	Z	
Mulciply Instruction	z	z	z	z	z	z	7	z	z	٨	×	٨	1	ı	Y	
Instruction Execution Time (µsec)	2.0-8.5	2.0	2.0-5.0	1.5-2.2	2.0	1.4-10.0	5.0-10.0	5.0	10.0	0.6-3.4	0.7-17.5	ı	ı	ı	2.0-232.0	
Indexed	Z	Y	*	*	¥	1	*	z	×	¥	×	*	•		×	
Power Supplies (Volts)	+5,+12/+5	- +5	+5	45	+5	+5	+5	+ 5	+5,+12		+5	+5	+5	-5.2,-2.0	t	
Internal Register	7	12	7	124	94	•	16	1	4	7	16	16		1	∞	
Clock On-Chip	N/Y	z	N/Y		X	~	¥	z	z	z	z	z	z	z	z	
Word Length Data; Address (Bits)	8;16	8;16	8;16	8;16	8;16	8;16	8,16;16/8;14	12;12	16;16	16;16	16;24	16;24	2 BIT SLICE	4 BIT SLICE	16;16	
Тесһподову	NMOS	NWOS	NMOS	NWOS	NMOS		NMOS/12L	CMOS	NMOS	NMOS	NWOS	NMOS	Bipolar	Bipolar/ECL	1	
Second	Y	≻	Y	z	X	Y	¥	Y	z	z	¥	ı	¥	1	ı	
Characteristics Microprocessor	Intel 8080/8085	Zilog Z80	Motorola 6800/6802	Zilog Z8	Mostek 3870	Intel 8048 (Family)	TI 9900/SBP 9900A	Intersil IM6100	National Semiconductor 8900	Intel 8086	Z110g Z8000	Motorola 68000	Intel 3000	Motorola 10800	DEC LSI 11/2	

(1) Intel 8022 only

TABLE A-II

REPRESENTATIVE A/D AND D/A CONVERTERS

Converter Type	Manufacturer	Model	Word Length (bits)	Conversion Time (µsec)	Technology
	TRW	TDC1007J	8	35x10 ⁻³	Bipolar
	TRW	TDC1001J	8	400x10 ⁻³	Bipolar
	TRW	TDC1002J	8	1	Bipolar
	Analog Devices	AD75705	8	40	CMOS
	Datel	ADC-MC88C	8	500	Bipolar
A/D	Analog Devices	AD7570L	10	120	CMOS
	Datel	ADC-HX12B	12	20	Hybrid
	Analog Devices	AD572BD	12	25	
	Micre Networks	ADC80	12	25	Hybrid
	National				
	Semiconductor	ADC1210	12	50	Hybrid
	TRW	TDC1016J	8	35×10 ⁻³	Bipolar
	Analog Devices	AD7523JN	8	100x10 ⁻³	
	Datel	DAC-UP88	8	2	Bipolar
	National				_
	Semiconductor	DAC0800	8	135	Bipolar
	Datel	DAC-088	8	150	Bipolar
D/A	TRW	TDC1017J	10	50x10 ⁻³	Bipolar
	Analog Devices	AD7541KN	12	1	
	Datel	DAC-HK12B	12	3	Hybrid
	Harris				
	Semiconductor	H1-5612	12	85	Bipolar
	Harris				
	Semiconductor	H1-562	12	200	Bipolar
	Datel	DAC-HA12B	12	500	Hybrid
	Analog Devices	AD7531	12	500	Hybrid

TABLE A-III

REPRESENTATIVE MULTIPLIERS

Manufacturer	Model	Word Length (bits)	Multiply Time (nsec)	Technology	Accumulator
TRW	TDC1008J	80	70	TTL	¥
MONOLITHIC MEMORIES	57.558	80	100		Z
TRW	MPY-8AJ	, &	130	TTL	Z
TRW	MPY-12A	12	150	TTL	Z
TRW	TDC10033	12	175	TTL	¥
TRW	TDC1010J	16	115	TTL	Y
TRW	MPY-16A	16	160	TTL	Z
AYD	9511	16	42000		Z

APPENDIX B

INTEL 8080 SOFTWARE FOR LQG CONTFOLLER

```
2: 8080 MACRO ASSEMBLER, UER 2.0 ERRORS . 0 PAGE 1
  3: 4: 5: 6: 7:
                                           KALMAN FILTER/CONTROLLER
  8:
8:
                                              PROJECT: MICROPROCESSOR IMPLEMENTATION OF MODERN C PROGRAMM: J. KRODEL, DIGITAL COMPUTER LAB 17-AUG-78
VERSION: 00.00
REVISION: 00.00
10:
11:
13:
14:
15:
16:
17:
                                             FUNCTIONAL DESCRIPTION:
THIS PROGRAM CONTROLS A 2ND
ORDER SYSTEM, USING MODERN CONTROL
METHODS. THE BASIC EQUATIONS FOLLOW
18:
19:
51:
50:
                                                                  - PHIDSU + HDXZ
55:
                                                          K+1
23:
24:
25:
26:
27:
                                                                       K+1
                                                                  - GDEU
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
                                              LINERE :
                                                                     . SYSTEM MEASUREMENT VECTOR
                                                                    . KALMAN FILTER GAIN MATRIX
                                                        HD
                                                                     . PAST STATE ESTIMATE VECTOR
39:
46:
41:
                                                        PHID
                                                                  . CLOSED LOOP SYSTEM MATRIX
42:
43:
44:
                                                                    - NEXT STATE ESTIMATE VECTOR
45:
46:
47:
                                                        GD
                                                                    - CLOSED LOOP FEEDBACK GAIN MATRIX
48:
49:
                                                                     . SYSTEM IMPUT VECTOR
50:
551:
553:
553:
555:
557:
556:
665:
665:
667:
668:
771:
772:
773:
                                              FOR THE SECOND ORDER SYSTEM!
                                             Z - 1X1 VECTOR
HD - 2X1 MATRIX
U - 2X1 VECTOR
PHID - 2X2 MATRIX
GD - 1X2 MATRIX
U - 1X1 VECTOR
                                           , REUISION HISTORY:
                                           SYSTEM EQUATES:
                                                                                       ; 8 OF ELEMENTS IN VECTOR
; 8 ROUS IN MATRIX
; DATA MATRIX START ADDR 81
; PARTIAL MATRIX MPY START ADDR
; MATRIX MPY RESULT START ADDR
                                           ÚS 1
                                                        EOU
EOU
                                          MS1
DMA1
PMMA1
MMRA1
                                                                   5000H
5100H
5200H
```

B-1

Fixem of a c

```
0002
0002
5300
5400
5500
                                                   EQU
EQU
                                       USZ
                                                                                  # OF ELEMENTS IN VECTOR
                                                                                  8 ROUS IN MATRIX
DATA MATRIX START ADDR 82
PARTIAL MATRIX MPY START ADDR
MATRIX MPY RESULT START ADDR
 771
781
                                       MS2
DMA2
PMMA2
                                                              5300H
5400H
5500H
  79:
  80 :
  81:
  158
           9992
9991
5699
5799
                                       บรว
  83:
                                                   EQU
                                                                               ; 8 OF ELEMENTS IN VECTOR
                                                              2
                                                                               ; 8 ROUS IN MATRIX
; BATA MATRIX START ADDR 83
; PARTIAL MATRIX MPY START ADDR
; MATRIX MPY RESULT START ADDR
  84:
                                       MS3
                                                   EQU
                                       DRA3
PRMA3
                                                             5600H
5700H
5800H
                                                   EQU
 25:
  26:
                                                   EQU
  871
                                       MIRA3
  88:
  89:
 96:
           5800
5300
                                       ÚOUT
                                                                               ; OUTPUT VAR LOCATION
; STRIP CHART VAR LOCATION
                                                             5800H
5300H
                                                   EQU
  351
                                       STRIPC EQU
 93:
                                       1
 941
                                       1
 951
           3C3D
                                                   ORG
                                                              3C3DH
 96:
           3C3D
                       C38941
                                                   1940
                                                                               ; SET UP INTERRUPT SERV ROUT.
                                                              INTE
 98:
                                       3
 99:
           4004
                                                   ORG
                                                              4800H
100:
1011
                                          INITIALZATION
102:
                                                                              ; DISABLE INTERRUPTS ; SET UP STACK POINTER
           4000
4001
103:
104:
                       310040
                                                   LXI
                                                             SP. 4000H
105:
106:
107:
108:
                                          PROGRAM START:
109:
                                          MULTIPLY MATRIX MD (KALMAN FILTER GAIN MATRIX) WITH UECTOR Z (SYSTEM MEASUREMENT VECTOR). HD IS 2 ROWS X 1 COL Z IS 1 ROW X 1 COL
110:
111:
:511
113:
                                       STRT1:
           4004
4004
4006
4009
115:
                       3E01
110051
210050
                                                             A, US1
D, PMMA1
H, DMA1
                                                                              ; ESTABLISH VECTOR SIZE
; PARTIAL MATRIX MPY START ADD
; BATA MATRIX START ADDR
116:
                                                   MUI
117:
                                                   LXI
118:
1191
           400C
400C
400D
400F
                                       COLM1 :
120:
                                                                              ; START NEXT COLUMN MPY, SAVE ; ESTABLISH MATRIX ROW SIZE
121:
                       F5
                                                   PUSH
                                                             PSU
                       9692
4E
                                                             3.MS1
C.M
                                                   MVI
                                                                              GET OPERAND $1
123:
                                                   MOV
124:
125:
            4010
                       23
                                                   INX
                                       ROUN1:
156:
           4011
                                                                                 MPY THE ELEMENTS IN EACH ROU
SAVE B,C,H & L
GET OPERAND 82
127:
            4011
                                                   PUSH
128:
            4012
                                                   PUSH
           4013
4014
4017
129:
                       66
                                                   MOU
                                                             H,R
                       CD4F41
7C
                                                   CALL
                                                             MULT
                                                                                  8 BIT SIGNED
                                                                                 PREPARE TO STORE
SAUE PARTIAL MATRIX MPY
131:
                                                             A,H
132:
            4018
                       12
                                                   STAX
                                                             D
                                                                                  ADJUST SAVE POINTER
RESTORE H & L
133:
            4019
                                                   INX
134:
135:
           401A
                       E1
                                                   POP
                                                                                 POINT TO MEXT OPERAND
RESTORE VECTOR COUNT (8)
RESTORE OPERAND 81 (C)
COLUMN ALL DONE 7
           4018
                       53
                                                   INX
                                                             H
136:
           401C
                       ČĬ
                                                   POP
138:
           401D
                       05
                                                   DCR
           401E
1391
                       C21140
                                                   JNZ
                                                             ROUNI
1401
                       F1
                                                                                 YES, RESTORE VECT SIZE ALL MULTIPLIES COMPLETE ?
                                                             PSW
141:
142:
143:
                                                   DCR
            4023
                       CZ0C40
                                                              COLNI
                                                                                 VES, SUM PARTIALS TO COMPLET
REESTABLISH MATRIX ROW SIZE
MATRIX MPV RESULT START ADDR
PARTIAL MAT MPV START ADDR
1441
            4026
                       5090
                                                   MUI
                                                             B.RS1
           4028
                       110052
1451
                                                   LXI
                                                             D, MMRA1
H, PMRA1
146:
                                                   LXI
1471
                                       SURA1:
1481
           402E
1491
            402E
                       OE O 1
                                                   MUI
                                                                              , REINITIALIZE VECTOR SIZE
                                                             C. US1
            4636
                                                                                CLEAR REG A
                                                   XRA
```

```
151:
152:
153:
154:
155:
156:
            4031
4032
4034
                                                                                 ; OBTAIN POINTER OFFSET IN DAE; CLEAR UPPER PORTION OF DAE; SET OFFSET, MATRIX ROW SIZE
                         D5
1600
1E02
                                                     PUSH
                                                               D
                                                               D.O
E.MS1
                                        SUMB1:
            4036
4036
                                                                                 ; A - A + HL
; HL - HL + DE (DE - OFFSET)
; ALL TERMS SUMMED ?
                         86
                                                     ADD
                                                               M
157:
158:
159:
160:
             4037
                                                               D
                                                     DAD
             4038
                         OD
                                                     DCR
                                                                                 , NO
                         C23646
                                                               SUMB 1
             4039
                                                     JNZ
                                                                                    YES, RESTORE RESULT ADDR
STORE RESULT
                                                     POP
            403C
                                                               Ð
                         D1
161:
             403D
                         iè
                                                     STAX
            403E
162:
                                                     DCR
                                                                                    MATRIX MPY COMPLETE ?
163:
164:
165:
                         CA5240
                                                     JZ
                                                               DONE 1
                                                                                    YES
                                                                                    YES
MO, POINT TO MEXT RESULT ADD
ADJUST TERM POINTER TO LAST
GET BASE ADDR
GET MATRIX ROW SIZE
             4842
                         13
                                                     INX
                                                               D
             4043
                                                     PUSH
                         DS.
166:
167:
168:
             4044
                         210051
                                                               H, PRMA1
                                                     LXI
             4047
                         3E02
                                                     MUI
                                                               A, MS1
                        90
5F
                                                     SUB
             4849
                                                               8
169:
170:
171:
                                                                                 ; GET OFFSET
             494A
                                                     MOU
                                                               E,A
                                                                                 CLEAR UPPER PORTION OF DE
             4048
                         1600
                                                     MUI
                         19
             404D
                                                     DAD
172:
173:
174:
            404E
404F
                        D1
                                                     POP
                                                               Ď
                         C32E40
                                                               SUMA1
                                         DONE 1 :
175:
             4052
176:
177:
178:
                                           MULTIPLY MATRIX PHID (CLOSED LOOP SYSTEM MATRIX) WI UECTOR W (PAST STATE VECTOR). PHID IS 2 ROUS X 2 COLS W IS 2 ROUS X 1 COL
179:
180:
181:
182:
                                                                                 ; ESTABLISH UECTOR SIZE
; PARTIAL MATRIX MPY START ADD
; DATA MATRIX START ADDR
183:
184:
             4052
                         3E02
                                                     MUI
                                                               A, US2
            4054
4057
                         110054
                                                               SAMO, H
                                                     LXI
185:
                                                     LXI
                                         COLHS:
187:
             405A
                        F5
9692
4E
                                                                                 ; START NEXT COLUMN MPY, SAI
; ESTABLISH MATRIX ROW SIZE
 188:
             405A
                                                    PUSH
                                                               PSU
                                                               B.MSZ
C.A
H
189:
             4051
                                                     MUI
                                                                                 ; GET OPERAND 81
; POINT TO OPERAND 82
190:
             405D
 191:
192:
                                         ROUM2:
             405F
1941
             405F
                                                    PUSH
                                                                                 ; MPY THE ELEMENTS IN EACH ROW
195:
196:
197:
            4060
4061
4062
                                                                                    SAUE B,C,H & L
GET OPERAND 82
                                                     PUSH
                         66
                                                     MOU
                                                               H,M
                                                                                    8 BIT SIGNED
PREPARE TO STORE
SAUE PARTIAL MATRIX MPY
                        CD4F41
7C
                                                     CALL
                                                               MULT
198:
             4065
                                                     MOU
                                                               A,H
199:
             4066
                         iž
                                                     STAX
                                                     XHI
                                                                                    ADJUST SAVE POINTER
                                                                                    RESTORE H & L
POINT TO NEXT OPERAND
201:
            4068
4069
406A
                        E١
                                                     POP
                        C1
                                                     INX
                                                               H
                                                                                    RESTORE VECTOR COUNT (B)
RESTORE OPERAND $1 (C)
COLUMN ALL DONE ?
203:
                                                     POP
2041
205 :
206 :
207 :
            406B
406C
406F
                         05
                                                     DCR
                         C25F 40
                                                     JNZ
                                                               ROUN2
                                                                                    NO
                                                                                    YES, RESTORE VECT SIZE ALL MULTIPLIES COMPLETE ?
                                                               PSU
                        F1
: 895
             4070
                         30
                                                     DCR
500:
             4071
                         CZSA40
                                                               COLN2
                                                                                   YES, SUR PARTIALS TO COMPLET
REESTABLISH MATRIX ROW SIZE
MATRIX RPY RESULT START ADDR
PARTIAL MAT MPY START ADDR
210:
                                                               B, MS2
D, MMRAZ
            4874
                         9692
211:
                                                     MUI
212:
             4076
                         110055
210054
                                                     LXI
213:
             4079
                                                     LXI
214:
215:
                                         SURAZ:
             407C
            407C
407E
407F
216:
                         9E 92
                                                                                    REINITIALIZE VECTOR SIZE
                                                    MUI
                                                               C.USZ
                                                                                   CLEAR REG A
OBTAIN POINTER OFFSET IN DAE
CLEAR UPPER PORTION OF DAE
SET OFFSET, MATRIX ROW SIZE
217:
                                                     XRA
                         D5
1600
                                                     PUSH
                                                               D
             4080
                                                               Ď. o
                                                     MUI
1955
                                                     MVI
                                                               SZR, 3
2211
                                         SUMB2:
1225
             4084
                                                                                ; A * A + HL
; HL * HL + DE (DE * OFFSET)
; ALL TERMS SUMMED ?
223:
             4084
                         86
                                                     ADD
                        19
•D
                                                     DAD
1155
             4085
225:
             4026
```

```
JHZ
                                                            SUMBE
226:
227:
            4087
408A
                       C22440
                                                  POP
STAX
DCR
                                                                                VES, RESTORE RESULT ADDR
STORE RESULT
MATRIX MPV COMPLETE ?
: $55
            408B
408C
                        15
                                                            ħ
: 655
            408D
                                                  ĴŽ
                                                            DONES
                                                                                NO. POINT TO NEXT RESULT ADD
ADJUST TERM POINTER TO LAST
GET BASE ADDR
535:
            4090
                       13
                                                  INX
                                                  PUSH
233:
            4092
                       210054
                                                            SARRY, H
234:
235:
236:
237:
238:
238:
            4095
4097
                       3E02
90
5F
                                                            SSM.A
                                                                                GET MATRIX ROU SIZE
                                                  AUI
                                                  SUB
                                                  ROU
            4098
                                                                                GET OFFSET
            4099
4098
                       1500
                                                            D, O
                                                                               CLEAR UPPER PORTION OF DE
                                                  DAD
                                                            D
            409C
                       Dī
                                                  POP
240;
241;
242;
                       C37C40
            409D
                                                  JAP
                                                            SURA2
243;
244;
245;
                                         DO VECTOR ADDS TO COMPUTE W(K+1) I.E.
                                           W(K+1)1 - PHIDSU(K)1 + HD8Z(K)1
246:
247:
248:
249:
                                           MCK+13N . PHIDSMCK3N + HDRZCK3N
250 :
251 :
252:
253:
254:
255:
            40A0
                                       DONE 2:
                                                                             ; GET M(K+1) STORAGE AREA ADDR
                                                           H, DMA3
                       210056
                                                  LXI
                                                                            GET W(K+1) STORAGE AREA ADDR
TEMP SAUE
JOBTAIN HDEZ RESULT START A
JOBTAIN PHIDEW RESULT START A
JOBTAIN & OF TERMS TO ADD
JOBTAIN OFFSET TO STORE SUMS
                       210056
E5
210052
110055
0602
0E01
            40A3
                                                  PUSH
                                                            H, MMRA1
D, MMRA2
B, VS3
                                                  LXI
256:
257;
258;
            40AA
40AC
40AE
                                                  NU1
                                                  MUI
                                                            C,MS3
560:
                                                  INR
261:
262:
263:
264:
265:
            40AF
                                       ADDNXT:
                       AF
86
                                                                             ; CLEAR A REG
; GET GD#Z TERM
            40AF
                                                  YDA
            4030
                                                  ADD
            4081
                       Ē
                                                  XCHG
                       86
37
3F
17
                                                  800
                                                            R
                                                                               ADD PHIDEU TERM
SET CARRY - 0
2661
2671
2681
            4083
                                                  STC
            4034
                                                  CHC
                                                                            ADJUST FOR 2.0 SCALING
NEG OR POS ?
SET CONDITION CODE
POSITIVE, ANY OVERFLOW ?
YES, FORCE TO LARGEST 8
                       DAC440
B7
FZBF40
269:
270:
271:
            4016
                                                  JC
                                                            HEG
                                                  ORA
JP
            4039
                                                            HOFLO
            40BA
272:
            403D
                                                  ORI
                       F67F
                                                             7FH
273:
274:
                                      HOF LO
            40BF
2751
2761
2771
2781
2781
2791
                       E67F
                                                                             , FORCE TO POSITIVE &
            403F
                                                  ANI
                                                            7FH
            40C1
                       C3C640
                                                            SCAL1
                                      MEG:
            4004
            40C4
                       F680
                                                  ORI
                                                                             ; FORCE TO MEGATIVE &
                                       SCAL11
281:
            4006
            40C6
40C7
40C8
                       E3
77
                                                                             ; GET STORAGE ADDRESS
: 585
                                                  XTHL
                                                                               STORE SUM
CHECK IF ALL TERMS ADDED
223:
                                                  MOV
                                                            R,A
                       05
284:
                                                  DCR
285:
            40C9
                       CAD640
                                                            DOME 4
                                                  JZ
            40CC
40CD
40CE
40CF
                       7D
286:
                                                  MOV
                                                            A.L
                                                                             , ADJUST STORAGE ADDRESS
287:
                                                  ADD
MOU
XTHL
288:
                       Ë3
EB
                                                                             , RESTORE POINTERS
290:
291:
            4000
                                                  XCHG
                       13
                                                                             POINT TO MEXT GDEZ TERM POINT TO MEXT PHIDEW TERM ADD MEXT TERMS
            40D1
40D2
                                                  INX
593:
                                                            ADDNXT
2941
2951
2961
2971
                                         UPDATE W(K) WITH NEWLY CALCULATED W(K+1)
298:
3001
            40D6
40D6
                                       DOME 41
                                                  POP
                                                                             RESTORE STACK
                       £1
```

```
; GET 8 OF TERMS TO STORE
; TEMP SAVE
; GET U(K-1) STOREAGE AREA ADD
; GET OFFSET OF U(K-1)
                                                                 L, V$3
H
301:
             4007
                         2692
                                                      MUT
                                                      PUSH
LXI
MUI
302:
             40D9
                         ĒS
                         210056
0E01
303:
304:
305:
             40DA
40DD
                                                                 H, DRA3
                                                                 C.MS3
                                                      INR
             40DF
306:
307:
308:
309:
                         110053
             40E 0
40E 3
40E 5
                                                                                     GET U(K) STORAGE AREA ADDR
GET OFFSET OF U(K)
                                                                 D, DRAZ
B, RSZ
                                                      MUI
                                                      THE
                         44
            40E6
40E6
40E7
40EB
                                         STRNXT:
310:
                                                                                   ; GET U(K+1); STORE INTO OLD U(K); GET 8 OF TERMS REMAINING TO; ANY LEFT ?; NO
                                                                 A.R
311:
                         7E
                                                      MOU
                                                      STAX
312:
                         12
313:
                         ÉĴ
                                                      XTHL
             40E9
40EA
314:
                                                      DCR
                         ZÞ
315:
                         CAF748
                                                       JZ
                                                                 DONES
316:
             40ED
                                                      XTHL
                                                                                      YES.
                                                                                              RESTORE POINTER
                         Ē3
            40EE
40EF
40F0
40F1
317:
                          70
                                                      MOU
                                                                 A.L
                                                                                   ADJUST FOR NEXT W(K+1)
318:
                         81
                                                      ADD
                         6F
7B
                                                      MOU
319:
                                                                 L,A
                                                                                   : ADJUST FOR MEXT H(K)
320:
                                                                 A,E
             40F2
40F3
40F4
321:
                         80
5F
                                                      ADD
                                                                 E,A
STRNXT
3221
323:
                         C3E640
324:
325:
                                             MULTIPLY MATRIX GD (CLOSED LOOP FEEDBACK MATRIX) UI UECTOR U (NEXT STATE UECTOR).

GD IS 1 ROW X 2 COLS
U IS 2 ROWS X 1 COL
326:
328:
329:
             40F7
40F7
40F8
                                         DONES:
331 :
                                                                                  ; RESTORE STACK
; ESTABLISH VECTOR SIZE
; PARTIAL MATRIX MPY START ADD
; DATA MATRIX START ADDR
332:
                         E1
                                                      POP
                                                                 н
                                                                 A,US3
D,PMMA3
H,DMA3
                         3E02
110057
210056
333:
334:
                                                      MUI
             40FA
3351
                                         COLM3:
337:
             4100
                                                                                   ; START HEXT COLUMN MPY, SA
; ESTABLISH MATRIX ROW SIZE
; GET OPERAND 81
; POINT TO OPERAND 82
             4100
4101
4103
                        F5
0601
4E
338:
                                                      PUSH
                                                                PSU
                                                                                                                              SAUE
                                                                B.MS3
C.M
H
339:
346:
                                                      MUT
                                                      MOU
3411
             4104
342:
                                         ŘOMN3:
343:
             4105
            4105
4106
4107
3441
                         C5
                                                      PUSH
                                                                                      MPY THE ELEMENTS IN EACH ROLL
                                                                                      SAVE B, C, H & L
GET OPERAND 82
3451
                                                      PUSH
                                                      MOU
                                                                H,R
346:
                         66
                                                                                     GET OPERAND 82
8 BIT SIGNED
PREPARE TO STORE
SAVE PARTIAL MATRIX MPY
ADJUST SAVE POINTER
RESTORE M & L
POINT TO NEXT OPERAND
3471
                         CD4F41
             4108
                                                      CALL
348:
             410B
                         7Č
                                                      MOU
                                                                 A.H
349:
             410C
                                                      STAX
            410D
410E
410F
3501
3511
                         13
                                                      INX
                                                                 D
                                                      POP
                         Ē١
                                                                 H
352:
                                                      INX
                         23
                                                                                      RESTORE VECTOR COUNT (B)
RESTORE OPERAND SL (C)
COLUMN ALL DONE ?
             4110
                         CI
                                                      POP
3541
3551
             4111
                         05
                                                      DCR
                                                                 2
            4112
356:
                         ČŽO541
                                                      JNZ
                                                                 ROUMS
                                                                                      HO
357:
358:
                                                      POP
                                                                 PSU
                                                                                      YES, RESTORE VECT SIZE
                                                                                      ALL MULTIPLIES COMPLETE ?
             4116
                         30
                                                      DCR
359:
             4117
                         C20041
                                                                 COLHS
                                                      JH2
                                                                                      NO
360:
361:
362:
                                                                                      YES, SUR PARTIALS TO COMPLET
                         0601
110058
210057
                                                                                   REESTABLISH MATRIX ROU SIZE
MATRIX MPY RESULT START ADDR
PARTIAL MAT MPY START ADDR
            411A
411C
                                                      MUI
                                                                 B,853
                                                      LXI
                                                                D, MMRA3
H, PMMA3
363:
364:
365:
366:
367:
368:
            4122
                                         ŠUMA3:
             4122
                         66 65
                                                                C.U53
                                                     AVI
                                                                                      REINITIALIZE VECTOR SIZE
                         AF
DS
1600
1E01
                                                                                     CLEAR REG A
OBTAIN POINTER OFFSET IN DEC
CLEAR UPPER PORTION OF DEC
SET OFFSET, MATRIX ROW SIZE
             4124
                                                      XRA
            4125
                                                      PUSH
                                                                D
369
                                                      MUI
                                                                 Ď, e
370:
             4128
                                                      MUI
                                                                 E.MS3
372:
             412A
                                         SERUÉ:
                                                                                  ; A * A + HL
; HL * HL * DE (DE * OFFSET)
; ALL TERMS SUMMED ?
3731
            412A
                         19
                                                      ADD
                                                                 Ħ
3741
                                                      DAD
DCR
```

```
376:
           412D
                     C22A41
                                              JNZ
                                                       SUMB3
                                                                         NO
YES, RESTORE RESULT ADDR
STORE RESULT
           4130
4131
4132
                     D1
3781
                     12
                                              STAX
                                                                          MATRIX MPY COMPLETE ?
379:
                                                                         YES
NO, POINT TO NEXT RESULT ADD
ADJUST TERM POINTER TO LAST
380:
381:
           4133
                     CA4641
                                              JZ
                                                       DONE 3
                     13
D5
           4136
4137
                                              INX
382:
                                              PUSH
           4138
4138
                                              LXI
MVI
SUB
MOU
MVI
                                                                         GET BASE ADDR
GET MATRIX SIZE
383:
                     210057
                                                       H, PRMA3
                     3E 0 1
90
5F
384:
                                                       A,RS3
385:
           413D
386
                                                                      ; GET OFFSET; CLEAR UPPER PORTION OF DE; HL = PMMA + US - REG B
           413E
413F
                                                       E.A
387
                     1600
                                                       D. e
388:
           4141
389:
           4142
                     D1
C32241
                                              POP
390:
                                                       SIMP3
           4143
                                              JMP
391:
392:
           4146
                                   DONE3:
          4146
4147
                                                                      ; SET CARRY • 0
; CHECK FOR INTERRUPT COMPLETI
; MEEDED FOR 1ST PASS ONLY
393:
                     37
                                              STC
394:
                     3F
FB
                                              CMC
395
           4148
                                              EI
396 :
397 :
           4149
                                                                      ; WAIT FOR INTERRUPT
; INTERRUPT SERVICED
; CALCULATE MEXT OUTPUT
398:
           4149
414C
                     D24941
                                              JNC
                                                       WAITLP
399:
                     C30440
                                                       STRTI
400:
401:
                                      SUBROUTINE 'MULT' --- 8 BIT SIGNED MULTIPLY
403:
404 :
405 :
406 :
                                              HL . HEC
                                       INPUTS: C - MULTIPLICAND
M - MULTIPLIER
                                                                                             8 BIT SIGNED
8 BIT SIGNED
4071
409:
                                     OUTPUTS: HEL - PRODUCT
                                                                                             16 BIT SIGNED
410:
411:
412:
                                     DESTROYS: A,B,C,H,L
                                   MULTI
413:
414:
415:
           414F
                     7C
B7
                                             MOU
ORA
JP
                                                                      ; CHECK SIGN OF MULTIPLIER (H)
                                                       A,H
          4150
4151
416:
                     F26E41
                                                       RULHP
                                                                      , H IS POSITIVE
                                              CMA
INR
417:
                                                                      , MULTIPLIER (H) IS NEGATIVE
          4155
4156
4157
                     3C
67
79
418:
                                                      A, A
                                                                      I TAKE 2'S COMPLIMENT
                                             MOU
419:
                                                       A,C
                                                                       CHECK SIGN OF MULTIPLICAND
           4158
                                              ORA
421:
                     87
          4159
4150
4150
415E
                                                                      ; INPUTS HAVE OPPOSITE SIGNS ; RULTIPLICAND (C) IS ; TAKE 2'S COMPLIMENT
422:
                     F26341
                                              JP
                                                       MULOS
                                              CMA
423:
                     3C
4F
424:
                                             INR
                                                       Ĉ.A
425:
426
427:
          415F
                                   MULSS:
          415F
4162
                     CD7941
                                                                      ; SAME SIGN, MULTIPLY AND RETU
428:
                                                       IMUL
4291
                     C9
430:
431:
           4163
                                   MULOS:
          4163
4166
4167
                                                                      ; H & C HAVE OPPOSITE SIGNS ; TAKE 2'S COMPLIMENT OF PRODU
432 :
433 :
                     CD7941
                                                       IMUL
                                             DCX
ROU
CRA
                     21
4341
                     7D
                                                       A,L
          4168
4169
416A
416D
435:
                     2F
436:
437:
                     6F
7C
2F
                                             HOU
HOU
CRA
                                                      L,A
                                                                      ; 2'S COMP OF L
438:
439:
440:
                                             MOU
           416C
416D
                     67
                                                                      1 2'S COMP OF H
                                                       H.A
                     CS
                                                                         RETURN WITH FINAL RESULT IN
4411
          416E
416E
416F
442:
                                   MULHP:
                                             MOU
ORA
JP
CMA
443:
444:
                     79
37
                                                                         H (MULTIPLIER) IS POSITIVE
                                                       A,C
                                                                        CHECK SIGN OF MULTIPLICAND
          4170
4173
4174
4175
4176
4451
                     F25F41
                                                       MULSS
446:
447:
448:
                                                                         MULTIPLICAND (C) IS NEGATIVE TAKE 2'S COMPLIMENT
                     3C
4F
                                              MOU
4491
                     C36341
                                                                      , DO OPPOSITE SIGN MULTIPLY
                                                       MULOS
450
```

```
4511
452:
                                         SUBROUTINE 'IMUL' --- 8 BIT UNSIGNED FRACTIONAL
4531
454:
455:
456:
457:
                                         INPUTS: C - MULTIPLICAND
                                                                                                             8 BIT UNSIGNED
8 BIT UNSIGNED
                                                           M - MULTIPLIER
                                            OUTPUTS: HL - PRODUCT
                                                                                                             16 BIT UNSIGNED
 458:
459:
460:
                                           DESTROYS: A.B.H.L
461:
462:
463:
464:
465:
             4179
                                                                                  ; CLEAR FOR FOLLOWING 'DAD' IN ; CLEAR BOTTON HALF OF HL ; INITIALIZE LOOP COUNTER
             4179
4178
                        0600
                                                      MUI
                                                      MOV
                         68
3E08
                                                      MVI
466 :
467 :
468 :
                                         ÍMUL1:
             417E
                                                                                  , SHIFT RESULT
                        29
D28341
            417E
417F
                                                      DAD
                                                                                  ; IF MSB SET, ADD MULTIPLICAND
; HL + ML + BC
                                                      JNC
DAD
                                                                IMULS
 469:
             4182
                         -
470:
471:
472:
473:
                                         IMUL2:
             4183
                                                                                  ; BECREMENT & TEST LOOP COUNTE
             4183
4184
                         30
                                                     DCR
                         C27E41
                                                      JNZ
                                                                IMULI
474:
                                                                                  : ADJUST FOR FRACTIONAL MPY
475 :
476 :
477 :
                                            INTERRUPT SERVICE ROUTINE
4781
4791
 480:
                                            FUNCTIONAL DESCRIPTION:
 481:
                                              THIS ROUTINE IS ENTERED WHEN THE CLOCK (DELTA T) GOES OFF. DELTA T IS A SQUARE WAVE CLOCK INPUT FROM A FUNCTION GENERATOR. HENCE IT IS PRESETTABL
482:
4831
 484:
485 :
486 :
                                              IT PROUIDES:
 4871
                                                   A) A DELTA T TIME STEP
B) A MEANS OF INDICATING END OF CONVERSION FOR
488:
489:
                                              AZD MAX CONVERSION TIME IS .05 MS. HENCE BELTA T
 490:
 491:
                                              DE SET HIGHER
 4921
                                              THE ROUTINE READS IN A 12 BIT AZD INPUT 2(K), WHICH TRUNCATES THE LEAST SIGNIFICANT 4 BITS SINCE ONLY B
4931
494:
495:
496:
497:
498:
                                              THE ROUTINE ALSO OUTPUTS U(K) TO THE ANALOG SYSTEM MEANS OF A D2A. THE D2A IS 8 BIT RETORY RAP IO. 2 OUTPUTS ARE PROVIDED: 1 TO THE SYSTEM 1 TO A STRIP CHART RECORE
 499:
500:
501:
                                              IN ADDITION, A CHECK IS DONE TO SEE IF THE INTERRUPT OCCURRED DURING CONTROL CODE CALCULATIONS, UNITCH COULD RESULT IN INACCURATE CONTROL COMMANDS. IF THIS ERROR OCCURS, THEN PGM CONTROL IS PASSED TO THE MONITOR.
502:
504:
505:
506:
507:
508:
509:
510:
511:
512:
                                         ÍNTR:
             4189
                                                                                  , DISABLE INTERRUPTS
             4189
418A
                        F3
FS
ES
                                                     DI
Push Psu
                                                                                  SAUE A
                                                      PUSH
513:
514:
515:
                                         CHECK IF CONTROL CODE COMPLETED
                                                                                  ; CHECK IF CONTROL CODE COMPLE
; FIND RET ADDR FROM INTERRUPT
516:
517:
518:
519:
             418C
                         33
                                                      INX
                                                                SP
SP
                                                     INX
INX
INX
LXI
MOU
XTHL
                         33
             418D
             418E
418F
                                                                 SP
                         214941
70
                                                                H, UNITLP
                                                                                  , GET WAIT LOOP HI ADDR
1555
             4190
4193
                                                                A,H
                                                                                  ; GET INTERR RET HI ADDR
; ARE THEY EQUAL ?
; MO, INDICATE ERR, STOP PGM
; GET INTERR RET LO ADDR
:552
             4194
                         E3
523:
524:
             4196
4196
4199
                                                      SUB
                         CED841
                                                                 ERR 1
                                                                 A,L
```

B-7

THEO PARE TO SEE THE TO LEAD THE CONTROLLER.

```
419A
419B
419C
419F
                                                                              J GET WAIT LOOP LO ADDR
J ARE THEY EQUAL ?
J NO, INDICATE ERR, STOP PGM
J YES, CONTROL CODE WAS COMPLE
J RESTORE STACK PHTR TO NORMAL
527:
528:
529:
                       96
C2D841
                                                   SUD
                                                   JN2
DCX
                                                             ERR1
                       38
530:
531:
            41A1
41A2
                                                   DCX
DCX
                        3Ď
532:
533:
534:
535:
536:
537:
                                       , READ A/D
                                                                             ; SET A/D READ CHANNEL
; AMPLIFIER INPUT
; READ LOW BYTE
; ADJUST FOR 4 BIT THROUGUAY
            4163
                       3E82
                                                   MUI
                                                             A, BZH
                                                             OETH
OETH
            41A5
                       DBES
                                                  OUT
538:
            41A9
41AA
41AB
41AC
41AD
41AF
41B0
41B2
41B3
                       539:
                                                   RRC
540:
541:
542:
                                                   RRC
                                                  RRC
RRC
ANI
HOU
IN
543:
544:
545:
546:
547:
548:
549:
                       EGOF
                                                             OFH
                                                                                PRESERVE LOW MIBBLE
                                                                                 TEMP SAVE
READ HIGH BYTE
                                                             L,A
OE4H
                       DBE4
of
of
                                                  IM
RRC
RRC
RRC
RRC
AMI
ORA
                                                                                 ABJUST FOR HIGH HIBBLE
                       of
of
EGFO
            4114
            4105
4106
                                                                              PRESERVE HIGH NIBBLE PRESERVE TO FORM 8 BIT INPUT STORE IMPUT IN MATRIX DATA A
                                                             OFOH
            4138
4139
                       35
$52:
$53:
                        210050
            41BC
5541
555:
556:
557:
558:
                                          OUTPUT D/A (U)
REMORY MAPPED I/O
5591
5601
            413D
41C0
41C1
                       210058
                                                  LXI
                                                             H, UOUT
                                                                              , OUTPUT U
561:
                       7E
                                                             A.R
562:
563:
564:
565:
                                                            H, OF 700H
H, A
H, STRIPC
A, H
                        2100F7
                                                   LXI
                                                  MOU
LXI
MOU
LXI
MOU
POP
POP
            41C4
            41CS
41C8
41C9
                       210053
                                                                            ; OUTPUT MEMORY LOC TO STRIP C
                        7E
566:
567:
568:
569:
                        2101F7
                                                             H, 0F701H
            41CC
41CD
41CE
41CF
                       E1
                       F1
570:
571:
                                                   STC
                                                                              ; INDICATE INTERRUPT COMPLETE
                       FB
C9
            41D1
572:
                                                                              , EMABLE INTERRUPTS & RETURN
573:
574:
575:
576:
577:
578:
                                          CONTROL CODE NOT COMPLETED, ERROR
            41D2
            4102
                       CF
                                                                              , BRANCH TO MONITOR IMMEDIATLY
579:
580:
581:
582:
                                       , DATA MATRIX STORAGE AREA
                                         THE FOLLOWING DATA IS FOR THE 2ND ORDER SYSTEM ALL 8'S ARE REPRESENTED AS FRACTIONS WHERE: +8 - FRAC.8128+0.5 -8 - 8'S COMP OF (-FRAC.8128+0.5)
583:
584:
585:
586:
587:
                                               588:
589:
590:
                                                         NOTE: GAINS BELOW ARE FOR T . 0.1 SEC
591:
                                               ************************************
592:
                                              - INPUT VECTOR FROM ARD
                                       , HD - MATRIX
594:
595:
596:
                                       113 · .113
                                                          . .057 UNEN SCALED ON 2.0
5971
598:
599:
                                                  000
                                                            SOCON
                                                                                  LANCON CONTROL OF COMENTA DEACTIONS
```

526:

The state of the s

E3

XTHL

B-8

Maria and the same of wall

```
601:
602:
603:
604:
605:
606:
607:
608:
                                                              ; NOTE: HD(1) & HB(2) HAVE BEEN COMPLIMENTED; DUE TO INVERTED INPUT.
                                                                                                                            ; Z(K) VECTOR A/B IMPUT $1
; MB MATRIX ROW1 COL1
; MB MATRIX ROW2 COL1
                                                                                                 OF 9H
                                                                                                  01H
609:
610:
611:
                                                                  U(K) - PAST STATE VECTOR
PHID - CLOSED LOOP SYSTEM MATRIX
                                                                                      .87264 .07127
-.86524 .63205
                                                                                                                                                               . 93563
612:
                                                                                                                                    • .43632
• -.13262
                                                                  PHID .
 6131
                                                                                                                                                                  . 31603
614:
                                                                                                                                                 WHEN SCALED ON 2.0
615:
616:
617:
                  5300
5300
5301
5302
5303
5304
5306
                                                                                                5300H
40H
38H
0F0H
40H
                                                                                ORG
DB
DB
                                                                                                                           J U(K) PAST STATE $1 INIT .5
J PHID MATRIX ROW1 COL1
J PHID MATRIX ROW2 COL1
J W(K) PAST STATE $2 INIT .5
J PHID MATRIX ROW1 COL2
J PHID MATRIX ROW2 COL2
                                    40
38
F0
40
05
28
618:
619:
620:
                                                                                DB
DB
DB
622:
623:
624:
625:
626:
627:
                                                              ; U(K+1) - PRESENT STATE VECTOR
; GD - CONTROL GAIN MATRIX
                                                              ; GD - -1.742 -.41412 -
628:
                                                                                                                                      -.871
                                                                                                                                                         -.20706
629:
                                                                                                                                         WHEN SCALED ON 2.0
631:
632:
633:
634:
                  5600
5601
5602
                                                                                ORG
DB
DB
DB
DB
                                                                                                5600H
                                     64
64
64
                                                                                                                           # U(K+1) PRESENT STATE #1
# GD MATRIX ROW1 COL1
# U(K+1) PRESENT STATE #2
# GD MATRIX ROW1 COL2
                                                                                                92H
                                                                                                SE SH
635:
636:
637:
638:
                                                                                END
639: NO PROGRAM ERRORS
640:
641:
642:
643:
                                                                           SYRBOL TABLE
644:
645:
646:
               E 01
                                  0007
4000
5000
4000
0003
417E
                                                                                40AF
405A
5300
4146
41D2
4183
                                                                                                                                                                            0001
0002
4052
40F?
                                                              ADDNX
                                                                                                                             4100
5600
4006
4006
4189
5500
401
414F
5406
405F
407C
412A
6008
                                                             COLHS
DMAS
DOMES
ERRI
IMULS
MARAI
MASS
                                                                                                           COLH3
DMA3
DONE 4
                COLN1
648:
649:
                DONES
DWW1
                                                                                                                                                         DOME 1
DOME 5
I MUL
650:
651:
652:
653:
654:
                                                                                                                                                                            4179
                                                                                                           М
                IMUL1
                                                                                                            INTR
                                                                               4183
5200
0002
41$F
5100
4011
0006
402E
4084
                                                                                                           INTR
MRRAZ
MS3
MULT
PRRAZ
ROUNZ
STRIP
SURAZ
SURAZ
MS3
                                                                                                                                                        L
RMRA3
RULHP
MEG
PRRA3
ROWH3
STRHX
SURA3
WATT
                                                                                                                                                                           5800
416E
40C4
5700
                                  0006
0002
4163
408F
0006
4006
4004
4036
                MS1
MULOS
                                                             MULSS
PRMA1
ROUN1
655:
656:
657:
658:
               HOFLO
PSU
SCALI
STRT1
                                                                                                                                                                            4105
                                                              SP
SURA1
SURBS
                                                                                                                                                                           40E6
4122
5800
659:
660:
661:
                SUMBI
                USS
```

٠.

APPENDIX C

LSI-11 SOFTWARE FOR LQG CONTROLLER

```
KALMAN FILTER/CONTROLLER
PROJECT: MICROPROCESSOR IMPLEMENTATION OF MODERN CONTROL PROGRAMM: J. KRODEL, DIGITAL COMPUTER LAB
DATE: 15-APR-80
VERSION: 00.00
REVISION: 00.00
FUNCTIONAL DESCRIPTION:
THIS FROGRAM CONTROLS A 5TH
ORDER SYSTEM: USING MODERN CONTROL
METHODS: THE BASIC EQUATIONS FOLLOW
                = PHID*W + HD*Z
        _K+1
                = W
        W
                = GD*W
         K+1
WHERE:
                  = SYSTEM MEASUREMENT VECTOR
        HD
                 = KALMAN FILTER GAIN MATRIX
                  = PAST STATE ESTIMATE VECTOR
        PHID = CLOSED LOOP SYSTEM MATRIX
                  = NEXT STATE ESTIMATE VECTOR
         K+1
        GD
                  = CLOSED LOOP FEEDBACK GAIN MATRIX
                  = SYSTEM INPUT VECTOR
         K+1
FOR THE FIFTH ORDER SYSTEM:
        = 5x1 VECTOR
HD = 5X5 MATRIX
W = 5X1 VECTOR
PHID = 5X5 MATRIX
GD = 4X5 MATRIX
        = 4X1 VECTOR
REVISION HISTORY:
ANALOG INTERFACE:
         THIS INTERFACE ALLOWS THE USER TO INVESTIGATE ROTH THE ANALOG AND DIGITAL COMPUTER STATES AT ANY POINT IN TIME OF THE SIMULATION/CONTROLLER. THIS PROGRAM ACTS AS A SLAVE TO THE ANALOG MACHINE WITH
```

```
RESPECT TO "MODE" OPERATION. THE 3 MODES ON THE ANALOG COMPUTER ARE:

I.C. (INITIAL CONDITIONS)

OP (OPERATE)

HLD (HOLD)

THE OVERLOAD CONDITION WILL ALSO BE HANDLED.

WHEN IN I.C. MODE THE PROGRAM DECIPHERS THIS MODE, AND RESETS THE INTERNAL CLOCK AND AWAITS FOR THE OPERATE MODE. ONCE IN OPERATE MODE, THE PROGRAM ALLOWS THE CLOCK TO RUN FREE AND CONTROL OF SIMULATION BEGINS.
```

IF THE HOLD MODE IS ENTERED, THE CLOCK IS IMMEDIATELY HALTED, AND THE PROGRAM CAN BE SET TO BREAKFOINT UNDER OUT TO EXAMINE THE PRESENT STATUS OF THE LSI-11 CONTROLLER. LIKEWISE, ANY INFORMATION OF THE SIMULATOR CAN BE OBTAINED VIA THE ANALOG COMPUTERS DIGITAL KEY PAD. WHEN THE OPERATE MODE IS LATER ENTERED THE CLOCK STARTS AGAIN AT PRECISELY THE POINT IT WAS STOPPED.

THE ANALOG COMPUTER HAS THE CAPABILITY OF GOING INTO THE HOLD STATE WHEN ANY AMPLIFIER IS OVERLOADED. IF THE SYSTEM BECOMES OVERLOADED THEN AGAIN THE INTERNAL CLOCK IS HALTED, AND LINEWISE THE PROGRAM CAN BE HALTED UNDER OUT CONTROL.

NOTE: FOR CORRECT OPERATION OF THIS CODE, PATCHES MUST BE MADE TO THE ANALOG COMPUTER. BELOW ARE LISTED THE NECESSARY PATCHES.

UPF = UNIVERSAL PATCH PANEL HIO = HYBRID I/O PATCH PANEL DPF = DIGITAL PATCH PANEL

UPP.OVL - UPP.HOLD *ALLOWS HOLD STATE WHEN OVERLOAD OCCURS DPP.CLK - HIO.RGSTA *INTERRUPT FOR I/O UPDATE UPP.ABAR - HIO.LSI-11 DIGITAL INPUT 1 *ALLOWS CODE TO DETECT.... UPP.A - HIO.LSI-11 DIGITAL INPUT 0 *...ANALOG COMPUTER MODE.

NOTE: CLK BUS DOES NOT WORK UNLESS IN OPERATE MODE.

ABAR A ! ANALOG COMPUTER MODE

O O ! DON'T CARE
O 1 ! I. C. MODE
1 O ! OPERATE MODE
1 1 ! HOLD MODE

EXTERNAL GLOBLS

.GLOBL HBRKPT ; SYSTEM IN HOLD ODT BREAK POINT

EQUATES

The state of the s

; DIOCSR = 170000 ; LSI-11 DIGITAL INPUT/OUTPUT STATUS REG DIOIN = 170004 ; LSI-11 DIGITAL INPUT REG TIMPSW = 340 ; CLOCK INTERRUPT PSW DAOUTO = 176750 ; D/A OUTPUT REG DAOUT1 = 176752 ; D/A OUTPUT REG DAOUT2 = 176754 ; D/A OUTPUT REG DAOUT3 = 176756 ; D/A OUTPUT REG

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COLE & COLUMN TO DDC

```
; A/D CSR COMMAND, GAIN = ; A/D STATUS REG ; A/D BUFFER REG
AUCHO
AUCHI
                = 0001
= 0401
                                                                                      GAIN = X10
ADCH2
ADCH3
ADCH4
ADCSR
                =
                    1001
                = 1401
= 2001
= 176770
= 176772
= 6315
 ADBUF
                                                   # OF ELEMENTS IN VECTOR 1
# ROWS IN MATRIX 1
# OF ELEMENTS IN VECTOR 2
# ROWS IN MATRIX2
# OF ELEMENTS IN VECTOR 3
 Ý<u>S</u>1
                    =
MS2223
                =
                =
M93
                =
                                                # ROWS IN MATRIX 3
BEGIN:
                                                                ; SET STACK POINTER
; SET TIMER INTERRUPT VECT. ADDR(ROST A)
; SET TIMER INTERRUPT VECTOR PSW
; ENABLE ROST A INTERRUPT ON DIGITAL
; INPUT/JUTPUT CARD
; START BY ZEROING D/A OUTPUTS
                MOV
MOV
                                #1000,SP
#TIME1,@#320
#TIMPSW,@#322
                                 #100,0#DIDCSR
                HOV
                 JMF.
                                ICHODE
    GET SYNCHRONIZED WITH ANALOG SYSTEM
START:
                                                                ; OBTAIN ABAR;A
; MASK UNWANTED BITS
; ARE WE PRESENTLY IN HOLD ?
; YES
; YES
                MOV
                                @#DIDIN;ARARA
#177774;ABARA
                BIC
                                #1,HLDFLG
                BEQ
                                CHKOF
                                #3,ABARA
                                                                   NO, WAS HOLD MODE JUST ENTERED ?
                BEQ
                                HOLD
CHKOP:
                CMP
                                #2,ABARA
                                                                ; WAS OPERATE MODE JUST ENTERED ? ; YES
                BEQ
CMF
CMP
                                OPERAT
                                #0,ABARA
START
                                                                F THIS STATE SHOULD NEVER OCCUR
                                #3,ABARA
                                                                ; IF IN HOLD, CHR FOR OPERATE MODE
                BEÜ
                                START
    **** IN I. C. MODE ****
   INITIALIZATION OF ANALOG COMPUTER PARAMETERS
ICHODE:
                CLR
CLR
                                P#DAGUTO
                                                                   INITIALIZE D/A
INITIALIZE D/A
INITIALIZE D/A
                                @#DAOUT1
@#DAOUT2
@#DAOUT3
ICNT
                CLR
CLR
CLR
                                                                    ÎNÎTÎALÎZE D/A
ÎNÎTÎALÎZE ÎNTERRUPT COUNTER
                                                                   INDICATE NOT IN HOLD MODE INITIALIZE MATRIX INPUTS
                                HLDFLG
                CLR
INITM:
               MOV
ADD
CMP
                               #IC,BMA1(R2)
#IC,BMA2(R2)
#14,R2
#74,R2
INITM
                BNE
                JMP
                                START
;
                                                                             THIS PAGE IS REST QUILLETY PRACTICABLE
```

The second second second second

FROM Contraction of the Contraction

```
**** SYSTEM IN HOLD ****

CLOCK STOPS AUTOMATICALLY (OUT OF OPERATE MODE)
ASSUME OUT BREAKPOINT AT "HBRKPT"

IF NO BREAK POINT SET, LSI-11 IS STILL IN HOLD STATE UNTIL USER PRESSES OPERATE.
HOLD:
HBRNPT:
             MOV
                           #1, HLDFLG
                                                       ; INDICATE IN HOLD HODE
                           START
              JMF
# *** SYSTEM IN OPERATION ***
OPERAT:
                           HLDFLG
                                                       ; INDICATE NOT IN HOLD MODE
; INIT TIMER INTERRUPT FLAG
             ČLR
# WAIT FOR TIMER INTERRUPT
TIMEUT:
             MOV
BIC
                           @#DIDIN,ABAFA
#177776,ABARA
NDICH
                                                      ; IC OR HOLD KEY PRESSED ?
; A INDICATES IN I. C. OR HOLD
; NO I. C. OR HOLD MODE PRESSED
; YES, GOTO START
             BEQ
                           START
             JMF
NOICH:
             CMP
                           #1,TIFLAG
                                                       ; TIMER INTERRUPT YET ?
             BNE
                           TIMEWT
  MULTIPLY MATRIX HD (KALMAN FILTER GAIN MATRIX) WITH VECTOR Z (SYSTEM MEASUREMENT VECTOR).

HD IS 5 ROWS X 5 COLS
Z IS 5 ROWS X 1 COL
  INITIALIZATION
             MOV
                           $VS1,RO
                                                       ; CLEAR MATRIX MULT, RESULT AREA
             MOV
                           #MMRA1,R2
INI1:
             CLR
DEC
                           (R2)+
                           RO
INI:
             BNE
                                                      ; ESTABLISH VECTOR SIZE
; DATA MATRIX START ADDR
             MOV
                           #VS1, COLCNT
                           #DMA1,R1
             MOV
COLN1:
                                                      ; ESTABLISH MATRIX ROW SIZE
; INIT. RESULT ADDR.
; GET OPERAND $1
             MOV
                           #MS1,R0
                           #MMRA1,R2
(R1)+,R3
             MOV
ROWN1:
                           (R1)+,R4
PC,MULT
             VOM
                                                      # GET OPERAND # 2
# 16 BIT SIGNED
              JSR
  SCALE
             ADD
                           R4, (R2)+
                                                       ; SUM CORRESPONDING TERMS
```

THIS PARTY OF THE PARTY OF THE

C-4

```
: CHECK FOR ADDITION OVERFLOW
                                                 ; THIS COLUMN ALL DONE F
; NO
; ALL MULTIPLIES COMPLET: (*)
            DEL
PNE
DEL
                        RO
ROWNI
COLENT
                         COLNI
                                                 . NO
            ENE
   MULTIFLY MATRIX PHIL (CLOSED LOOP SYSTEM MATRIX) WITH VECTOR W (PAST STATE VECTOR). PHIL IS 5 ROWS X 5 COLS W 15 5 ROWS X 1 COL
# INITIALIZACION
                        #V51+R0
#MMRA2+R2
            mC∵
MC.
                                                🕩 DLEAR MATRIX MULT. RESULT AREA
İMID:
            CLE
EE
                         (RD)+
                        RO
INIC
#V51.JOLONT
#DMAI.RI
            BAS MO.
                                                 # ESTABLISH VECTOR SIZE # DATA MATERY STAFT A DO.
101/2:
                        #MS2.R0
##MRA2.F2
                                                 : ESTABLISH MATRIX FOR SIZE
: INIT: RESULT ADD.
: GET CHERAND BI
            MD.
MD.
                         (R1)++R3
            MŪ,
:
-0#R1:
            MOV
USR
                                                 ; GET OFERAND $ 1
; 16 BIT Slow 0
                        (R1)++R4
FC+MULT
* SCALE
            134 3
                        R4, (R2)+
                                                 * SUM CORRESTONDING TERMS
   THECK FOR ADDITION OVERFLOW
            DEC
                        R0
                                                 🕫 THIS COLUMN ALL DONE 🕆
                        ROWN2
POLORT
COLOR
COLAR
                                                 # ALL MULTIPLIES COMPLETE ?
. De BOTOR ARGE TO COMPUTE W N+1) 1.E.
    脚(1991)1 = 在6000米區 10/1 于 900×20(8)1
    量(大+1)的 = PHID*W·K)N + HD*Z(K)K
                        AND
# UPDATE WILL WITH HEWLY CALCULATED WINTED
                                                 # W(F+1) STORAGE AFER ALDS
# 18#2 RESULT START ARDS
# PHID#W RETURN BRADE ALD
            MOV
                        #BM43.R1
                        #MMRAI+R3
            MÛ.
```

A CONTRACTOR OF THE PARTY OF TH

PERSON OF THE RESERVE OF THE STREET

```
; GET # DF TERMS TO AM:
; W(K) STORAGE AREA ADDR
                                #VS3,COLCNT
#DMA2,RO
                MOV
                ΜŌŲ
ADDNAT:
                                                                 ; GET TERM 1
; GET TERM 2
; DG SIGNED ADD
; DHA FOR OVERFLOW
; OVERFLOW, BET MAX LIMITS
; SET TO FOSITIVE MAX #
; SET TO NEGATIVE MAX #
                                (R2)++R4
(R3)++R5
R5+R4
SEAL1
                MO.
                MÜÜ
                ADD
BUC
TEL
BEL
                                MAXEO9
                                #100000,R4
SCAL1
                MűV
                JMF
MAXEGET
                                #77777,84
                                                                 * FOSITIVE MAX #
                MOV
SIALL:
                                                                 ; STORE RESULT within 
; STORE RESULT with 
; CHA IF ALL TERMS ADDED
                                R4+(R1)
R4+(R0)
COLCN
DONE4
                MOV 11
                                #MS3+1*2,R1
#MS2+1*2,R0
ADDN)
                Ā.
                                                                 ; ADJUST STORAGE ADDRES
                A.
Jes
    HUTTIFLE MATELY ON FOLDSED LOOP FEEDBACK MATRIX DECTOR OF CHEXT STATE VECTORS:

31 IS 4 FOUS & 5 OOLD

W 15 5 FOUS & 1 OOL
                                                                                                        WITE
ICHEA.
# INTITALIZATION
                                ★500×60
★例的85×60
                                                                 ; FLEAR MATRIX MULT. RESULT AREA
IMIE:
                                (R2)4
R0
INTS
#VSS.COLDNT
                ; ESTHEL SH VECTOR SIDE
: DATA MATRIX START ADDR
                MOV
                                 季D的高图+形1
:
106431
                                                                 : BSTAP, ISH MATRIX ROW SIZE
! INTT. RELLET ARRES.
! BET OPERAKI #.
                ₩<u>©</u>0
#20
#00v
                                 ##123;R6
###RA3:R1
.R1;++R3
积分数据等:
                                                                 # GET DEERAND # 1.
# 16 EIT BIGNER
                                 (R1 +•€4
=0•MULT
                MO.
USF
 # SCALE
                ADI
ADI
                                 F4
F5
                AARDAD AAR
                                 10
                                 R.S.
                                 †• +
Ç∵
                                 F 2
```

```
ROL
ALC
ABD
                                                                                                                                                                                          65
54
                                                                                                                                                                                            Park Post
                                                                                                                                                                                                                                                                                                                                                                                   + SUM CORRESPONDING TERMS
 * CHESS FOR AIRCTION OVERFLOW
                                                                                                                                                                                                                                                                                                                                                                                      FITHIS COLUMN ALL DONE **
FOR ALL MULTIPLIES COMPLETE *
FOR NO.
                                                                                             DE I
                                                                                                                                                                                          REWAS
TOLKS
                                                                                              2000
                    (\mathbb{T}_{2},\mathbb{T}) \mapsto (\mathbb{T}_{2},\mathbb{T}_{2},\mathbb{T}_{2}) = \mathbb{T}_{2}
                                                                                                                                                                                                                                                                                                                                                                              GET OUTPUT ADDR

180 = 3245 FOR S VOLT HANSE

551 IST OUTFUT COMMAN.

FREPARE FOR FIXED DIVIDE

PERFORM INTEGER BIVIDE O SCALE

OUTFUT TO ANALOG

PREPARE FLA FIXED DIVIDE

PERFORM INTEGER BIVIDE TO MODE

OUTPUT TO ANALOG

PREPARE FOR FIXED BIVIDE

PERFORM INTEGER BIVIDE TO SCALE

OUTPUT TO ANALOG

PERFORM INTEGER BIVIDE

FRESARE FOR FIXED BIVIDE

FRESARE FOR ANALOG

FRESARE FOR ANALOG
                                                                                                                                                                                    # 100 PC 
                                                                                           MOUNT COME TO SECURITY OF THE 
   ∮ 50BRJUTINE HUUT - ---- 16 PIT SIGWES HUUTIFN Y
                                                                                                                                                                                                                                                                                                                                                                                      # FOR BRNET ON Y
MULT:
                                                                                                                                                                                                                                                                                                                                                                                   ; SAVE R3 VALUE

; INIT SIGN FLAG

; THE SIGN OF 1ST OPERAND

; T1 POSITIVE

; 2/8 COMPLIMENT II

; COMPLIMENT SIGN FLG
                                                                                                                                                                                        R3+P5
SGNFLG
R5
                                                                                             ďŪ√
                                                                                           LOUIS
NENE
                                                                                                                                                                                          MUL71
                                                                                                                                                                                            R5
                                                                                                                                                                                            SÖNFLO
MULTIT
                                                                                                                                                                                                                                                                                                                                                                                   + CHR SIGH OF INT OPERWAY

: TI POSH NEE

: 278 COMPLIMENT TO

: COMPLIMENT BIGN FLAS
                                                                                                                                                                                        . .
                                                                                           REL
COM
                                                                                                                                                                                        MOLTZ
84
                                                                                                                                                                                            BORFLE
MULTO:
                                                                                                                                                                                       RS+R4
SGMFLG
MULT3
R5
R4
                                                                                           MULTST
BEG
                                                                                                                                                                                                                                                                                                                                                                                   # MULTIPLY OPERANIS
# OHE FOR PROPER SIGN
                                                                                           NE T
                                                                                                                                                                                                                                                                                                                                                                                     # NEGATIVE SIGN. TAKE 1 S COMPLIMENT
                                                                                                                                                                                          5.4
 MULTI:
                                                                                          ACCEPTS
                                                                                                                                                                                        2-4
                                                                                                                                                                                                                                                                                                                                                                                 * ADDUAT FOR FRAFFIONAL MAN
                                                                                                                                                                                        £5
                                                                                                                                                                                          F 4
```

THIS PAGE 18 NEWS OF STREET COLORS WELLS. PROOF OF THE SECOND SECOND

```
* SUBROUTINE 'DIVIDE' --- 16 BIT SIGNED DIVIDE
fivine:
                                         MOLESTLESS
TRADS
                                                                                                                                                                    ; SAVE R3 VALUE
; INIT SIGN FLAS
; CHR SIGN OF LST OPERAND
; T1 POSITIVE
; 215 COMPLIMENT T1
; COMPLIMENT SIGN FLG
                                                                                  R3 + R5
86 N F L 6
R5
B1 V D1
                                                                                   EUNFLE
 PIVE1:
                                         TOT DO NOT DO NO
                                                                                                                                                                    OHE SIGN OF 2ND OPERAND
TO POSTILVE
OF 275 COMPLIMENT TO
COMPLIMENT SIGN FLAG
                                                                                  81
11.II
                                                                                  R:
B:F-F-5
PIVEL
                                                                                 RS-RO
SGMFLU
DIVD3
RO
                                                                                                                                                                     ; DIVIDE OPERANDS
; CHK FOR PROPER SIGN
                                          NEG
                                                                                                                                                                      ; NEGATIVE SIGN, TAKE I S COMPLIMENT
IIVII:
                                          ETE
                                                                                  FO
                                                                                                                                                                    316N FLAG FOR MULT ROUT.
SOMFLOT WWDFD
                                                                                   5
        INTERRIPT SERVICE FLUTINE
       FUNCTIONAL DESCRIPTION:
              THIS ROUTINE IS ENTERED WHEN THE CLOTE (DELTA TO GOES OFF) "DELTA TO IS A SQUARE DAVE CLOTE INPUT FROM THE ANALOG LONGS ENTHEMPE IT IS PRESETTABLE. AND IT PROVIDES A BELTA TITME STEP.
               AT THIS TIME ALL AND CHARGETS ARE REPUR AND APPROPRIATELY PLACED INTO THE DATA MATRIX.
 TIMEI:
                                                                                                                                                                    ; START A/D CONVERSION
; BOMP INTERPUPE COUNTER
; PUSH R2 ON STACE
; PUSH R3 ON STACE
; TABLE INDEX POINT R
; BET TIME INTERPORT PLAG TRUZ
                                          MO:
                                                                                   #ADCHC-@#ADCSR
                                                                                 #1.IONT
R2.-- EF
F3.-- EF
                                          ADD
                                          MŪ.
                                          HÖV
CLP
HÖV
                                                                                    ≢I,TIFLAG
                                         @#ADCSF
NOEBCC
@#ADRUF+P3
#ADCH1+@#ADCSF
Ft+ECALAD
                                                                                                                                                                     4 CONVERSION COMPLETE ?
                                                                                                                                                                    • CONVERSION CONFLETE

• NO

• YES, READ

• START NEX, ATT CONVERSION

• SCALE THIS AZD INCLE
                                       TETP
Pil
Mil
                                                                                                                                                                    # CONVERSION COMPLETE :

# NO

# YES, REAT A/O

# BTART NEXT A/O CONVERSION

# SCALE THIS A/O INSCR
                                                                                  @#ADCBF
NGEGGI
@#ADEL +RF
#ADCHI+@#ADCBR
PC+BCALAD
                                                                                  9#ADCSF
NOFECT
2#A186 + P7
#AICHO+0#ADCSF
                                                                                                                                                                     A COMPERSION COMPLETE A
                                                                                                                                                                     : NO
                                                                                                                                                                     : YES: READ $40
: ETAK: METT AND LONGERS.CO
```

```
JSR
                                                                                      PC.SCALAD
                                                                                                                                                                          # SCALE THIS A/D INFUT
   NOEDC3:
                                             TSTR
                                                                                      @#ADCSR
                                                                                                                                                                          # CONVERSION COMPLETE #
                                                                                     NOZOCZ
G#ADFUF,RZ
#ADCH4+@#ADCSF
PE,SCALAD
                                            BPL
MOU
MOU
                                                                                                                                                                         ; NO
; YES; READ A/D
; START NEXT A/D CONVERSION
; SCALE THIS A/D INDUT
                                             JSK.
    NOEDE4:
                                          TSTE
BEL
                                                                                                                                                                         # CONVERSION COMPLETS * NO
                                                                                    @#ADCSR
NOFDC4
@#ADBUF,R3
PC-SCALAD
(SE-+-R3
(SE-+-R3
                                                                                                                                                                         * NO

F YEEF READ A/D

SCALE THIS A/D INPUT

FRESTORE REG 3

RESTORE REG 2
                                           A DESCRIPTION OF THE PROPERTY 
   PROPERTY -- SCALE AND INPUT POSTINE
  SCALADI
                                                                                    RESERVE.
                                           REFERENCE
                                                                                                                                                                         ; GET A/I SIGN BIT INTO COMP. SIGN BIT
                                                                                  R3
#11.4F3.*R3
#2486.*R3
#12.486.*R3
#12.000
#12.000
#14.81
#14.81
                                                                                                                                                                       ; CLEAR EXTRANEOUSLY ROTATED 91:8
; A 1 INFUT HAS +1 TO -1 VOLT BANGE
; 20450. = (10/50)*10240T5*32*8
                                           MČ.
                                                                                                                                                                       # STORE RESULT
# ADDGST POINTER IN TABLE
                                           APP
  FILRET:
                                          RTS
  ADERR:
                                           NO.
                                                                                                                                                                        # SET OF BREET HERE
                                           _imi
                                                                                    SELFET
  1 STORAGE AREA
ABAPA: .WORL
HLDELD: .WORL
TIFLAG: .WORL
IONT: .WORL
COLORT: .WORL
                                                                                                                            APAR:A FLAB INDICATOR
ANALOS EYS IN HOLD FLAS
TIMER INTERRUST INDICATOR FLAS
INTERRUST COUNTER
COLUMN COUNTER
                                                                                    Ō
                                                                                    Ō
  É DATA MATRIK AREA ≢1 ⊦HD¥Z
                                         IELT4 7 = 0.025 SE(
       SCALING:
X = FRAC * 32768
                                                                                  . WOF 0
PMA15
                                        45
```

THIS PAGE IS BEST QUALITY PRACTICABLE
PROM DOLATIONAL TO DDC

and the second section of the second

```
; Y(3) = Y
; HI(1,3) =
; HI(2,3) =
; HI(3,3) =
; HI(3,3) =
; HI(3,3) =
; HI(3,3) =
                                                                                                                                                                                                                   Y
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     ì
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           HD(5.3) = Y

Y(41 - 1

HD(1.4) = Y

HD(2.4) = Y

HD(3.4) = Y

HD(3.4) = Y

HD(3.4) = Y

HD(3.4) = Y

HD(3.5) 
                                                                                                                                                                                                                                                                                                                                                                                                                                      16
                                                                                                                                                                                                                      475.4.1
   4、空中产生,然中产品主义。中央区中、建设、人民共享国家国家国家区域的企会。
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10.00 (10
   īmāī.
                                                                                                                                                                                                            NAMES OF THE STATE                                                                                                                                                                                                                                                                                                                                                                                                                                971-16-41-944-171-115

    DA14 MATESY AREA #3 (60%0(h+1))

                                                                                                                                                                                                                   . WCF ]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ime::
                                                                                                                                                                                                                                                                                                                                                                                                                               6311
21
164171
156434
                                                                                                                                                                                                                      .WOFE
.WOFE
.WORK
```

MMRA3:

Distribution List Report R80-944590-1

Contract F49620-79-C-0078

Director of Mathematical and Information

Sciences Bldg. 410

Bolling AFB, Washington, D. C. 20332

Attn: Lt. Col. George W. McKemie (16)

ASD/XRT

Wright-Patterson AFB, OH 45433

Attn: Lt Col W. Othling .

OASD/PA&E

Pentagon

Washington, DC 20360

Attn: Mr. T. P. Christie

NASA-Flight Research Center

Edwards AFB, CA 93523

Attn: Mr. H. A. Rediess

SAMSO/YAD

Technology-Guidance & Control Los Angeles AFS, CA 90045

NASA-Ames Research Center

Moffett Field, CA 94035

Attn: Mr. Elwood C. Stewart

Naval Ocean Systems Center

Tactical Command Control Division

San Diego, CA 92152

Attn: Dr. Robert Kolb, Code 824

NASA-Langely Research Ctr

Hampton, VA 23365

Attn: Mr. Larry W. Taylor, Jr.

AFIT/ENE

Wright-Patterson AFB, OH 45433

Attn: Capt. Gary Reid

Office of Naval Research

Technology Group

800 North Quincy St.

Arlington, VA 22217

Attn: Mr. David Siegel

AFIT/ENE

Wright-Patterson AFB, OH 45433

Attn: Capt James Negro

AFFDL/FGL

Wright-Patterson AFB, OH 45433

Attn: Paul Blatt

RADC/ISCP

Griffiss AFB, NY 13441

Attn: Heywood Webb

ARO

P.O. Box 12,211

Research Triangle Park, NC 27709

Attn: Dr. J. Chandra

Office of Naval Research

Mathematics Group

800 North Quincy Street

Arlington, VA 22217

Attn: Dr. Stewart Brodsky

AFAPL/TBC

Wright-Patterson AFB, OH 45433

Attn: Mr. Charles Skira

AFATL/DLY

Eglin AFB, FL 32542

Attn: Dr. Jesse Gonzales

AFWL/LRO

Kirtland AFB, NM 87117

Attn: Lt Col Dale Neal

David Taylor Naval Ship R&D Center

Code 2730

Annapolis, MD 21404

Attn: Mr. Walter J. Blumberg

AFWL/AL

Kirtland AFB, NM 87117

Attn: Maj Kenneth Herring

